Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\frac{x}{x-1}\)
\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}.\frac{x}{x-1}\)
\(=\frac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}\)
Nếu \(x\ge2\) thì
\(Q=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x\sqrt{x-1}}{\left(x-2\right)\left(x-1\right)}=\frac{2x}{\left(x-2\right)\left(\sqrt{x-1}\right)}\)
Nếu \(x< 2\) thì \(Q=\frac{1-\sqrt{x-1}+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x}{\left(x-2\right)\left(x-1\right)}\)
Cảm ơn bạn nhiều nhưng mình thấy \(1-\frac{1}{x-1}=\frac{x-2}{x-1}\) mà bạn sao lại bằng \(\frac{x}{x-1}\)được
\(M=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(1-\frac{1}{x-1}\right)\)
\(M=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}\cdot\frac{x-1-1}{x-1}\)
\(M=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}\cdot\frac{x-2}{x-1}\) (đk: \(x\ge1\)
\(M=\frac{\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|}{\left|x-2\right|}\cdot\frac{x-2}{x-1}\)
Nếu \(1\le x< 2\) =>\(M=\frac{1-\sqrt{x-1}+\sqrt{x-1}+1}{2-x}\cdot\frac{x-2}{x-1}\)
\(M=-\frac{2}{x-1}\)
Nếu x > 2 => \(M=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}\cdot\frac{x-2}{x-1}\)
\(\frac{2\sqrt{x-1}}{x-1}=\frac{2}{\sqrt{x-1}}\)
A = \(\frac{2}{\sqrt{x-1}}\)