Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai
Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)
Khi đó \(x< y\) nhưng \(z< y\)
\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)
\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)
\(b\left(a+c\right)=ba+bc\left(3\right)\)
\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)
\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)
\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
\(\Rightarrow x< y< z\)
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
Ta có: \(\left(a+b+c-d\right)\left(a-b-c-d\right)=\left(a+b-c+d\right)\left(a-b+c+d\right)\)
\(\Rightarrow\frac{a+b+c-d}{a+b-c+d}=\frac{a-b+c+d}{a-b-c-d}\Leftrightarrow\frac{\left(a+b\right)+\left(c-d\right)}{\left(a+b\right)-\left(c-d\right)}=\frac{\left(a-b\right)+\left(c+d\right)}{\left(a-b\right)-\left(c+d\right)}.\)
Đặt \(A=a+b;B=c-d;C=a-b;D=c+d.\)Ta được:
\(\frac{A+B}{A-B}=\frac{C+D}{C-D}\Rightarrow\frac{A}{B}=\frac{C}{D}\Leftrightarrow\frac{a+b}{c-d}=\frac{a-b}{c+d}\Rightarrow\frac{a+b}{a-b}=\frac{c-d}{c+d}\)
Vậy ta được:
\(\left(a+b+c-d\right)\left(a-b-c-d\right)=\left(a+b-c+d\right)\left(a-b+c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c-d}{c+d}.\)
a,
b, a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Vì \(b,d>0\)nên \(bd>0\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow ad< bc\)vì \(bd>0\)
Đáp án B