Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}<\frac{1}{2}\)
Nhưng z = \(\frac{1+1}{2+4}=\frac{2}{6}=\frac{1}{3}\) không lớn hơn 1/2 hay y
Phải là x < z < y
cậu tra trên google ấy , **** tớ cái nha !
nếu ko thấy trên googlle thì để tớ giúp nhưng cậu phải **** cho tớ đã
Vì \(\frac{a}{b}\) < \(\frac{c}{d}\) nên ad < bc (1)
Xét tích : a(b+d) = ab + ad (2)
b(a+c) = ba + bc (3)
Từ (1);(2);(3) suy ra a(b+d) < b(a+c) do đó \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) (4)
Tương tự ta có : \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) (5)
Kết hợp (4);(5) ta được \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\)
hay x < z < y
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì \(\frac{a}{b}\) < \(\frac{c}{d}\) nên ad < bc (1)
Xét tích
a(b+d) = ab + ad (2)
b(a+c) = ba + bc (3)
Từ (1),(2),(3) suy ra
a(b+d) < b(a+c) do đó : \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) (4)
Tương tự ta có \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) (5)
Từ (4),(5) ta được : \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\)
Hay x < z < y
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y