Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ác Mộng sai rồi:
Ta có:\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\)
Vậy có thể đảo lại là đúng!!!!!
Chúc bạn học tốt ^_^
Nếu \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)
\(\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\)
\(\Leftrightarrow2a^2=2bc\)
\(\Leftrightarrow a^2=bc\)
Vậy \(a^2=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\) luôn luôn đúng.
a) \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\Leftrightarrow\dfrac{ad-bc}{bd}< 0\)\(\Leftrightarrow ad-bc< 0\) ( do bc>0) \(\Leftrightarrow ad< bc\) (đpcm)
b) \(ad< bc\) \(\Leftrightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\) \(\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)(đpcm)
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\)
\(\Leftrightarrow\left(ac-ac\right)+\left(bc+bc\right)=\left(a^2+a^2\right)+\left(-ab+ab\right)\)
\(\Leftrightarrow2bc=2a^2\)
\(\Leftrightarrow a^2=bc\left(đpcm\right)\)
Vậy \(a^2=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\left(đpcm\right)\)