Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a là một số lẻ không chia hết cho 3 thì số dư của a2 chia cho 6 là 1
Tick nha xhok du ki
a^2-1= (a+1)(a-1)
nếu a là 1 số lẻ không chia hết cho thì ( a-1)(a+1) là 1 số chẵn chia hết cho 2 và 3
mà 2 và 3 nguyên tố cùng nhau nên (a-1)(a+1) chia hết cho 6
Bạn trên làm sai rồi!
Mình làm(Đã được thầy chữa 100%)
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
@Trịnh Đức Anh
Vì n không chia hết cho 3
=>n2:3(dư 1)
=>n2-1 chia hết cho 3
Lại có: n là số lẻ
=>n2 là số lẻ
=>n2-1 là số chẵn
=>n2-1 chia hết cho 2
=>n2-1 chia hết cho 2 và 3
Mà (2,3)=1
=>n2-1 chia hết cho 2.3
=>n2-1 chia hết cho 6
Lời giải:
Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
Nếu $a=6k+1$:
$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$
Nếu $a=6k+5$:
$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$
Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.
cho vd : 7 k chia hết cko 3
7 . 7 = 49
49 : 6 = 8 ( dư 1 )
vậy a . a chia 6 dư 1