Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Khi n là số chẵn thì n=2k
\(A=n^3-4n=n\left(n-2\right)\left(n+2\right)\)
\(=2k\left(2k-2\right)\left(2k+2\right)\)
\(=8k\left(k-1\right)\left(k+1\right)\)
Vì k;k-1 là hai số liên tiếp nên k(k-1) chia hết cho 2
=>A chia hết cho 16
\(B=n^3+4n\)
\(=n\left(n^2+4\right)\)
\(=2k\cdot\left(4k^2+4\right)\)
\(=8k\left(k^2+1\right)\)
Vì k;k^2+1 bao giờ cũng khác nhau về tính chẵn/lẻ nên k(k^2+1) chia hết cho 2
=>B chia hết cho 16
Hai số có chữ số tận cùng giống nhau nên ta sẽ đi CM: n^5 - n chia hết cho 10
Dễ thấy n^5 và n cùng tính chất chẵn lẻ nên n^5 -n chia hết cho 2 (1)
Ta có: n^5 - n = n(n+1)(n-1)(n²+1)
= n(n+1)(n-1)(n+2)(n-2) + 5n(n-1)(n+1)
Số hạng cuối thì chia hết cho 5 còn số hạng đầu là tích của 5 số tự nhiên liên tiếp nên cũng chia hết cho 5 => n^5-n chia hết cho 5 (2)
Từ (1), (2) và do 2 và 5 là hai số nguyên tố cùng nhau ta sẽ có đpcm!
Coi chữ số tận cùng của n là h
Với n lẻ :
\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)
Tương tự với n chẵn :
\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)
Vậy ...
Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:
\(A=n^5-n\)
A chia hết cho 5 với mọi n thuộc N (*)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)
(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm
p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa
Nếu n và n5 có chữ số tận cùng giống nhau
⇒n5−n⋮10⇒n5−n⋮10
Ta có:
n5−nn5−n
=n(n4−1)=n(n4−1)
=n(n2−1)(n2+1)=n(n2−1)(n2+1)
=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)
=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)
=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)
Vì n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) là tích của 5 số tự nhiên liên tiếp
⇒n(n−1)(n+1)(n−2)(n+2)⋮5⇒n(n−1)(n+1)(n−2)(n+2)⋮5
Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp
⇒n(n−1)(n+1)(n−2)(n+2)⋮2⇒n(n−1)(n+1)(n−2)(n+2)⋮2
⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)
Ta có: 5n(n−1)(n+1)(n−2)(n+2)⋮55n(n−1)(n+1)(n−2)(n+2)⋮5
Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp
⇒5n(n−1)(n+1)⋮2⇒5n(n−1)(n+1)⋮2
⇒5n(n−1)(n+1)⋮10(2)⇒5n(n−1)(n+1)⋮10(2)
Từ (1) và (2) suy ra
n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10
⇒n5−n⋮10⇒n5−n⋮10
Vậy n và n5 có chữ số tận cùng giống nhau
hok tốt
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2-4+5\right)=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right)\)
Ta thấy (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiếp đồng thời chia hết cho 2 và 5
hay (n-2)(n-1)n(n+1)(n+2) chia hết cho 10 (1)
Ta lại có: (n-1)n(n+1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2
=> 5(n-1)(n+1) chia hết cho 10 (2)
Từ (1)(2) => \(n^5-n\)chia hết cho 10 hay có chữ số tận cùng là 0
=> đpcm
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Theo mình là như thế
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Tự tìm nha
Ta có: \(n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích của 5 số tự nhiên liên tiếp
nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
Lại có \(5n\left(n-1\right)\left(n+1\right)⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\left(1\right)\)
Xét \(n\left(n-1\right)\)là tích của 2 số tự nhiên liên tiếp
\(\Rightarrow n\left(n-1\right)⋮2\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮2\left(2\right)\)
Mà \(\left(2;5\right)=1\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow n^5-n⋮2.5\)
\(\Rightarrow n^5-n⋮10\)
\(\Leftrightarrow n\)và \(n^5\)có chữ số tận cùng giống nhau
Vậy ,...
Ta có n^5 - n = n (n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 5 - 4) = n(n + 1)(n - 1)( 5 + n^2 - 4 ) = 5n(n + 1)(n - 1) + n(n + 1)(n - 1)(n^2 - 4) = 5n(n + 1)(n - 1) + n(n - 1)(n + 1)(n - 2)(n + 2).
Do n( n - 1) chia hết cho 2 (là tích của 2 số tự nhiện liên tiếp) nên 5n(n + 1)(n - 1) chia hết cho 10 (=5 nhân 2) (1).
Ta có n(n - 1)(n + 1)(n - 2)(n + 2) là tích của 5 số tự nhiên liên tiếp nên nó chia hết cho 2 và 5 mà 2 và 5 nguyên tố cùng nhau nên n(n - 1)(n + 1)(n - 2)(n + 2) chia hết cho 10 (=2 nhân 5) (2).
Từ (1) và (2) => điều phải chứng minh