Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
co 2n+1chia het cho n+1
suy ra 2 (n+1)-1 chia het cho n+1
suy ra 1 chia het cho n+1 (vi 2(n+1) chia het cho n+1)
suy ra n+1=1
suy ra n=0
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
Lần sau ghi đề rõ ra nhé:
- Tìm giá trị của x , y và n
a) 6x + 99 = 20y
\(\Leftrightarrow105=20^y\) , mà:
105 : 20 = 5,25 = 5 \(\Rightarrow\orbr{\begin{cases}y=5\\x=5-\left(20:10\right)=3\end{cases}}\) (ở đây 20 : 10 số 20 thực ra là 20y nhưng trong này ta không tính số mũ nên mình bỏ)
b) \(2n+9⋮n+1\)
\(\Rightarrow\left(2n-1\right)+9⋮n\). Thử lần lượt các số từ 1 - 9. Ta có :
- \(\left(21-1\right)+9⋮1\)(Chọn)
- \(\left(22-2\right)+9⋮̸2\)(Bỏ chọn)
- \(\left(23-3\right)+9⋮̸3\) (bỏ chọn)
Cứ thử lần lượt như vậy đến 9. Ta có:
- \(\left(29-9\right)+9⋮̸9\) (bỏ chọn)
\(\Rightarrow n=1\)
Ta có 2n+1=2(n-3)+7
Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3
Vì 2(n-3) chia hết cho n-3
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4
Nếu n-3=-1 => n=2
Nếu n-3=1 => n=4
Nếu n-3=7 => n=10
Ta có : \(2n+1⋮n-3\)
\(=>2n-6+7⋮n-3\)
\(Do:2n-6⋮n-3\)
\(=>7⋮n-3\)
\(=>n-3\inƯ\left(7\right)\)
Nên ta có bảng sau :
n-3 | 7 | 1 | -7 | -1 |
n | 10 | 4 | -4 | 2 |
Vậy ...
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
3n + 5 \(⋮\)n + 1
=> 3n + 3 + 2 \(⋮\)n + 1
=> 3 . ( n + 1 ) + 2 \(⋮\) n + 1 mà 3 . ( n + 1 ) \(⋮\)n + 1 => 2 \(⋮\)n + 1
=> n + 1 thuộc Ư ( 2 ) = { 1 ; 2 }
=> n thuộc { 0 ; 1 }
Vậy n thuộc { 0 ; 1 }
Ta luôn có n-2 chia hết cho n-2
Suy ra 4(n-2) chia hết cho n-2
Suy ra 4n-8 chia hết cho n-2 (1)
Theo bài ra 4n-1 chia hết cho n-2 (2)
Từ (1) và (2) suy ra (4n-1) - (4n-8) chia hết cho n-2
Suy ra 4n-1-4n+8 chia hết cho n-2
Suy ra 9 chia hết cho n-2
Suy ra n-2 thuộc ước của 9 = 1 hoặc 3 hoặc 9
* Nếu n-2 =1 suy ra n=3 thuộc N (thỏa mãn)
* Nếu n-2 =3 suy ra n=5 thuộc N ( thỏa mãn )
Còn 9 cũng tương tự thế bạn tự làm nhé
Mik ko biết viết mấy cái kí hiệu trên máy tính nên mong bạn thông cảm
a: S8={1;2;4;8}
S9={1;3;9}
S12={1;2;3;4;6;12}
b: M chia hết cho n
=>\(n\inƯ\left(m\right)\)
=>Ước của n chắc chắn sẽ là ước của m
=>\(S_n\subset S_M\)
c: \(S_n\subset S_m\)
=>Ước của n là ước của m
=>n là ước của m
=>\(m⋮n\)
n-1 chia hết cho n
=> -1 chia hết cho n
=> n thuộc Ư(1)={-1,1}
=> n thuộc {-1,1}