Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \({u_1} = 3,\;q = 1- 0,2 = 0,8\).
Giá trị của máy ủi sau n năm là: \({u_n} = 3 \times {0,8^{n - 1}}\)
Vậy sau 5 năm sử dụng giá trị của máy ủi là: \({u_5} = 3 \times {0,8^{5 - 1}} = 1,2288\) (tỷ đồng)
a, Hàm chi phí biên là:
\(C'\left(Q\right)=2Q+80\)
b, \(C'\left(90\right)=2\cdot90+80=260\left(USD\right)\)
Ý nghĩa: Chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 89 sản phẩm lên 90 sản phẩm là 260 (USD)
c, Chi phí sản xuất máy vô tuyến thứ 100 là:
\(C'\left(100\right)=2\cdot100+80=280\left(USD\right)\)
Theo phương án 1, tiền lương mỗi quý tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công sai \(d = 0,5 \times 3 = 1,5\)
Công thức tổng quát \({u_n} = 15 + 1,5\left( {n - 1} \right)\)
Sau 3 năm làm việc \(\left( {n = 12} \right)\), lương của người nông dân là:
\(\frac{{12}}{2}\left[ {2 \times 15 + \left( {12 - 1} \right) \times 1,5} \right] = 279\) (triệu đồng)
Theo phương án 2, tiền lương mỗi quý sẽ tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công bội \(q = 1,05\)
Công thức tổng quát \({u_n} = 15 \times 1,{05^{n - 1}}\)
Sau 3 năm làm việc \(\left( {n = 12} \right),\) lương của người nông dân là:
\(\frac{{15\left( {1 - 1,{{05}^{12}}} \right)}}{{1 - 1,05}} = 238,757\) (triệu đồng)
Vậy thì theo phương án 1 thì tổng lương nhận được của người nông dân cao hơn.
tham khảo:
Thông tin trên không đủ để ta xác định độ cao của máy bay so với mặt đất phẳng, tại thời điểm 1 phút kể từ khi máy bay cất cánh mà chỉ tính được quãng đường bay của máy bay bay được.
Đáp án C
Giả sử có n máy thì chi phí cố định là 50n ( n = 1 ; 2 ; 3 ; . . . . ; 8 )
Để tin 50000 tờ cần 5000 3600 n = 125 9 n (giờ in)
Chi phí cho n máy chạy trong một giờ là: 10(6n + 10) nghìn đồng
Khi đó, tổng chi phí để in 50000 tờ quảng cáo là :
(thay 4 giá trị xem giá trị nào cho kết quả nhỏ nhất)
Lại có f(5) < f(6) nên ta sử dụng 5 máy để chi phí nhỏ nhất