Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Vẽ vòng tròn lượng giác ta xác định góc quay tương ứng là 60o+90o+60 = 210o
Chọn C
+ T = 2 π w = 4 s
+ Khoảng thời gian ngắn nhất để con lắc đi từ vị trí có li độ s = 3cm đến li độ cực đại S0 = 6cm: t = T 6 = 4 6 = 2 3 s .
Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.
Biểu diễn dao động bằng véc tơ quay ta có:
Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.
Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.
Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.
Bạn xem thêm lí thuyết phần này ở đây nhé
Phương pháp véc tơ quay và ứng dụng | Học trực tuyến
Bài 1 :
T = 2π / ω = 0.4 s
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần
⇒ 2 ________________________________________... lần
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy:
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần
Chọn A
Ban đầu vật ở vị trí có pha ban đầu là -pi/3
Sau 13s, vật quét được góc: \(\varphi=\omega t=4\pi.13=52\pi\left(rad\right)\)
Vì góc quay được chia hết cho 2, nghĩa là sau 13s, vật sẽ quay về vị trí ban đầu có pha là -pi/3
\(\Rightarrow S=45cm=3+7.6=\dfrac{A}{2}+7A\)
Vậy vật quay được góc: \(\varphi=\dfrac{\pi}{3}+4\pi-\dfrac{\pi}{2}=\dfrac{23}{6}\pi\left(rad\right)\)
\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{23\pi}{6.4\pi}=\dfrac{23}{24}\left(s\right)\)
Bạn vẽ véc tơ quay ra để tìm nhé.
Dao động từ -2,5cm đến 2,5cm ứng với véc tơ quay từ M đến N
Góc quay là: \(60^0\)
Thời gian: \(t=\dfrac{60}{360}T=\dfrac{1}{6}.\dfrac{2\pi}{4\pi}=\dfrac{1}{12}s\)
Chọn A
Khoảng cách giữa hai vật theo phương Ox là:
Theo bài ra ta có d ≥ 2√3
Trong khoảng t1 = 1/24 s đến t2 = 1/3s = t1 + T/2 +T/12, d có độ lớn không nhỏ hơn 2√3 trong khoảng thời gian là:
∆t = T/12 + 2. T/12 = 1/8s.