Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp: Gia tốc lớn nhất a m a x = ω 2 A
Cách giải:
Từ điều kiện của biên độ dao động tổng hợp hai dao động thành phần cùng phương, cùng tần số:
Đáp án A
Chọn đáp án D
@ Lời giải:
+ Thế năng của vật dao động điều hòa biến thiên tuần hoàn với tần số góc:
+ Vậy thời điểm vật qua vị trí x = 4,5cm lần đầu tiên là: T 24 = 1 48 s
Năng lượng dao động bằng động năng hoặc cơ năng cực đại:
\(W=\dfrac{1}{2}m.v_{max}^2=\dfrac{1}{2}m.\omega^2.A^2=0,5.0,5.(10\pi)^2.0,02^2=0,01J\)
\(x=A.\cos^2(\omega t+\dfrac{\pi}{3})\) không phải dao động điều hoà bạn nhé.
Đó chỉ là dao động tuần hoàn mà thôi.
+ Biên độ dao động tổng hợp có giá trị nhỏ nhất khi hai dao động thành phần ngược pha nhau.
Đáp án A
Đáp án A
Vị trí có li độ x = 2 2 A vật có E d = E t = 0 , 5 E = 0 , 25 m ω 2 A 2 .
+ Phương trình dao động của hai con lắc lò xo
Khoảng cách giữa hai vật nặng của hai con lắc lò xo tại thời điểm t là:
Trong quá trình dao động, độ chênh lệch độ cao lớn nhất của hai vật là A
Động năng của con lắc M cực đại W đ m = k A 2 2 = 0 , 12 J khi vật M ở VTCB. Khi đó ta biểu diễn được vị trí của vật N được biểu diễn trên đường tròn lượng giác (M và N lệch pha nhau góc π/6).
+ Từ đường tròn lượng giác xác định được
Đáp án D
Chọn A
+ Để vật dao động với cơ năng cực đại khi Amax.
+ x = x1 + x2 => x1 = x – x2 = A cos(ωt – π/3) - A2 cos(ωt – π/2)
= A cos(ωt – π/3) + A2 cos(ωt + π/2)
+ A12 =102 = A2 + A22 + 2AA2cos(- π/3 - π/2).
ó A22 - AA2√3-100 + A2 = 0 (1).
+ Để phương trình (1) có nghiệm đối với A2 <=> Δ = (-A√3)2 – 4.1.(-100 + A2) ≥ 0
=> 0 ≤ A ≤ 20 cm.
=> Amax = 20 thay vào (1) tìm được A2 = 10√3 cm.