K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

Gọi x(km/h) là vận tốc thực của thuyền máy

ĐK:x\(\ge\)2

Vận tốc lúc xuôi dòng: x+2 km/h

Vận tốc lúc ngược dòng: x-2 km/h

Thời gian lúc xuôi dòng từ A đến B: \(\frac{42}{x+2}\) h

Thời gian lúc ngược dòng từ B về A: \(\frac{42}{x-2}\) h

Vì thời gian lúc ngược dòng nhiều hơn thời gian xuôi dòng là 1 h 12' =\(\frac{6}{5}\)h nên ta có phương trình:

\(\frac{42}{x-2}-\frac{42}{x+2}=\frac{6}{5}\)

=>6x2-864=0

Giải phương trình ta được: x1=12(nhận) ; x2=-12(loại)

Vậy vận tốc xuôi dòng là 14 km/h vận tốc ngược dòng là 10 km/h

14 tháng 5 2016

       Gọi thời gian chiếc thuyền đi từ A đến B là x

             Thời gian chiếc thuyền đi ngược từ B về A là y. 
    Ta có: 4,5km=\(\frac{1}{2}\)của 9km 
Do đó thời gian chiếc thuyền đi ngược từ B về A gấp đôi thời gian chiếc thuyền đi từ A đến B. 
                        => y = 2x 
        Mà x + y = 1h45p= 105 phút 
  Thay y = 2x ta có 
           x+2x=3x=105 phút 
           x=105 phút : 3 
           x=35 phút =\(\frac{7}{12}\) giờ 
Vậy độ dài quãng đường là:

        \(9x\frac{7}{12}=5,25\left(km\right)\)  
             Đáp số: 5.25 km 

10 tháng 3 2017

Cô gợi ý em quãng đường ABdài là 5,25 km

1 tháng 7 2016

undefined

1 tháng 7 2016

  Gọi vận tốc dòng nước = vận tốc bè trôi = a km/h (a>0). Gọi vận tộc ca nô là x km/h (x>a); => vận tốc xuôi dong là x+a, còn ngược dòng là x-a. Do Ca nô xuôi dòng 144 km thì quay trở về A ngay , cả đi lẫn về hết 21giờ nên ta có phương trình 144/(x+a) + 144/(x-a) = 21 (1) và 144/(x+a) + (144-36)/(x-a) = 36/a <=> 144/(x+a) + 108/(x-a) = 36/a. Quy đồng rồi chuyển vế ta tìm được x=7a, thay x=7a vào (1) ta được 144/8a + 144/6a = 21 <=> 42/a = 21 <=> a=2 => x=14 (thoả mãn ĐK x>a>0). Vậy vận tốc canô là 14km/h còn vận tốc dòng nước là 2km/h. Mình nghĩ nếu bỏ phương trình (1) đi chắc cũng không sao

 vậy còn cái này sao ???????

24 tháng 9 2023

Tham khảo:

Gọi \(\overrightarrow a ,\overrightarrow b \) lần lượt là vectơ vận tốc riêng của ca nô A và B (cùng độ lớn).

Vì ca no A chạy xuôi dòng nên ngoài vận tốc riêng của ca nô, ca nô A còn được đẩy đi bởi vận tốc của dòng nước. Do đó vectơ vận tốc thực của cano A cùng hướng với vectơ \(\overrightarrow a \) và có độ lớn bằng tổng của vận tốc riêng và vận tốc dòng nước, là 18 km/h.

Ngược lại, ca nô đi ngược dòng nên bị cản lại một phần bởi dòng nước. Vì vận tốc của dòng nước nhỏ hơn vận tốc riêng của cano B nên vectơ vận tốc thực của cano B cùng hướng với vectơ \(\overrightarrow b \) và có độ lớn bằng hiệu giữa vận tốc riêng và vận tốc dòng nước, là 12 km/h.

Ta biểu diễn vận tốc thực của ca nô A và ca nô B như sau:

 

b) Dễ thấy:

Các vectơ \(\overrightarrow v ,\overrightarrow {{v_A}} ,\overrightarrow {{v_B}} \) đều có giá song song nên chúng cùng phương với nhau.

Ca nô A đi xuôi dòng nên vectơ vận tốc thực của ca nô A cùng hướng với vectơ vận tốc dòng nước.

Hay \(\overrightarrow v \) và \(\overrightarrow {{v_A}} \) cùng hướng.

Ca nô A đi ngược dòng nên vectơ vận tốc thực của ca nô B ngược hướng với vectơ vận tốc dòng nước.

Hay \(\overrightarrow v \) và \(\overrightarrow {{v_B}} \) ngược hướng.

Chú ý khi giải

Vận tốc riêng của cano là vận tốc của cano khi dòng nước đứng im.

Vận tốc thực của cano là vận tốc của cano khi kết hợp với dòng nước (đang chảy)

15 tháng 5 2016

Gọi vận tốc thật của cano là x(km/h)

ĐK: x\(\ge\)5

Vận tốc xuôi dòng x+5 km/h

Vận tốc ngược dòng: x-5 km/h

Thời gian xuôi dòng: \(\frac{90}{x+5}\) h

Thời gian ngược dòng: \(\frac{90}{x-5}\) h

Theo đề ta có PT:

\(\frac{90}{x+5}+\frac{90}{x-5}=\frac{15}{2}\)

=>15x2-360x-375=0

Giải PT ta được: x1=25(nhận) ; x2=-1 (loại)

Vậy vận tốc của cano khi xuôi dòng là: 30 km/h

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Đổi 300 m =0,3 km, 800 m = 0,8 km

7,2 phút =0,12(h)

Gọi khoảng cách từ C đến D là x (km) (0,8>x>0)

Khi đó, DB=0,8-x (km)

Theo định lý Py-ta-go ta có: \(AD = \sqrt {A{C^2} + C{D^2}} \)\( = \sqrt {0,{3^2} + x^2} \) (km)

Thời gian đi từ A đến D là: \(\frac{{\sqrt {0,{3^2} + x^2} }}{6}\left( h \right)\)

Thời gian đi từ D đến B là: \(\frac{{0,8 - x}}{{10}}\left( h \right)\)

Tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút nên ta có phương trình:

\(\begin{array}{*{20}{l}}
{\frac{{\sqrt {0,{3^2} + {x^2}} }}{6} + \frac{{0,8 - x}}{{10}} = 0,12}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} + 3.\left( {0,8 - x} \right) = 0,12.30}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} - 3x - 1,2 = 0}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} = 3x + 1,2}\\
{ \Rightarrow 25.\left( {0,{3^2} + {x^2}} \right) = {{\left( {3x + 1,2} \right)}^2}}\\
{ \Leftrightarrow 25.\left( {{x^2} + 0,09} \right) = 9{x^2} + 7,2x + 1,44}\\
{ \Leftrightarrow 16{x^2} - 7,2x + 0,81 = 0}\\
{ \Leftrightarrow x = 0,225 \, \, \, (TM)}
\end{array}\)

Vậy khoảng cách từ vị trí C đến D là 225m.