Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có :
A = 60 x q + 31 ( q là số dư )
A = 12 x 5 x q + 12 x 2 + 7
A = 12 x ( 5q + 2 ) + 7
Vậy A chia 12 được số dư là 7
a = 12 x 17 + 7 = 211
Gọi a là số tự nhiên cần tìm:
\(a=60.q+31\)
\(a=12.17+r\) \(\left(0\le r< 12\right)\)
ta lại có \(60.q⋮12\)và 31 chia 12 dư 7
Vậy \(r=7\)
Vậy \(a=12.17+7=211\)
1)
Ta thấy: 67 – 64 = 3
Thương là: (38-14):3 = 8
Số đó là: 8 x 64 + 38 = 550
2)số tự nhiên A chia cho 60 dư 31 nghĩa là A = 60q + 31 = 12.5q + 12.2 + 7 ( q ∈ N )
A = 12 ( 5q + 2 ) + 7 mà nếu A chia cho 12 thì được thương là 17 nên 5q + 2 = 17 ⇔ k = 3 thỏa mãn điều kiện, thay lên trên ta được A = 211
Gọi a là số tự nhiên cần tìm
a = 60.q + 31
a = 12.17 + r (0≤ r < 12)
ta lại có 60.q ⋮ 12 và 31 chia 12 dư 7
Vậy r = 7
Vậy a = 12.17+7= 211
_ Gọi số tự nhiên cần tìm là : \(a.\)
\(a=60\times q+31\)
\(a=12\times17+r\) \(\left(0\le r< 12\right).\)
_ Ta lại có \(60\times q\)\(⋮\)\(12\)và \(31\div12\)dư \(7.\)
- Vậy \(r=7.\)
\(\Rightarrow a=12\times17+7\)
\(=211.\)
_ Vậy số tự nhiên đó là \(211.\)
Số cần tìm nếu bớt đi số dư trong phép chia cho 12 thì được số mới là
12x17=204
Số dư lớn nhất trong phép chia cho 12 là 11
Gọi số cần tìm là A \(\Rightarrow204< A\le204+11=215.\)
=> A chia 60 được thương là 3 và dư 31 nên số A cần tìm là
3x60+31=211