Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cần tìm cộng thêm 9 thì chia hết cho 7 và 13
Vì 7 và 13 là hai số nguyên tố cùng nhau nên số cần tìm chia hết cho 7.13=91
Vậy số cần tìm khi chia cho 91 dư là 91-9=82
n chia 7 dư 4 thì n có dạng \(7k+4\)
Ta có:
\(n^2=\left(7k+4\right)^2=49k^2+56k+14+2\) chia 7 dư 2
\(n^3=\left(7k+3\right)^3=343k^3+147k^2+189k+21+6\) chia 7 dư 6
câu 1 sai đề bạn ạ
câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11
1.Đề sai
2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N
Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)
Do đó \(a^2\) chia 11 dư 5
Do a chia cho 5 dư 1 = a = 5.m + 1 ; b chia 5 dư 2 = b = 5.n+2 ( m,n thuộc N* )
Ta có :
\(a.b=\left(5.m+1\right).\left(5.n+2\right)\)
\(=\left(5.m+1\right).5.n+\left(5m+1\right).2\)
\(=25.m.n+5.n+10.m\)chia cho 5 dư 2
Vậy a.b chia cho 5 dư 2
SỐ dư khi chia A cho 20 là 3. and mình cx play BB nhưng đã nghỉ lâu rồi
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1