Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số quyển sách có thể chia được là x(sách, x ϵ N*), theo đề bài, ta có:
\(x\div8\)
\(x\div12\)
\(x\div15\)
\(\Rightarrow x\in BC\left(8,12,15\right)\)
⇒ Ta có:
8 = 23
12 = 22.3
15 = 3.5
⇒ \(BCNN\left(8,12,15\right)\) = 23.3.5 = 120 ⇒ x = 120
⇒ \(BC\left(8,12,15\right)\) = {0;120;240;360;480;600;.....}
Mà 400 < x < 500 ⇒ x = 480
⇒ Vậy có tất cả 480 quyển sách.
Gọi số sách phải tìm là: x
Khi đó : x chia hết : 12,14,15 (800 < x < 900)
=> x \(\in\) B(12;14;15)
=> BCNN(12;14;15) = 420
=>B(12;14;15) = { 0;420; 840; 1260}
Mà 800 < x < 900
=> x = 840 ( t/m)
Gọi số sách phải tìm là: x
Khi đó : x chia hết : 12,14,15 (800 < x < 900)
=> x \(\in\) B(12;14;15)
=> BCNN(12;14;15) = 420
=>B(12;14;15) = { 0;420; 840; 1260}
Mà 800 < x < 900
=> x = 840 ( t/m)
Tham Khảo
Gọi m (m ∈ N*) là số sách cần tìm.
Vì xếp thành từng bó 10, 12,15 và 18 cuốn đều vừa đủ bó nên số sách m là BC(10;12;15;18)
Ta có: 10 = 2.5
12 = 22.3
15 = 3.5
18 = 2.32
BCNN(10,12,15,18) = 22.32.5 = 180
BC(10,12,15,18) = {0;180;360;540;..}
Vì số sách nằm trong khoảng 200 đến 500 nên m = 360
Vậy có 360 cuốn sách
Một số sách khi xếp thành từng bó 10 cuốn , 12 cuốn , 18 cuốn đều vừa đủ bó . Biết số sách đó trong khoảng từ 600 đến 800 cuốn . Tính số sách đó
GIẢI
gọi số sách cần tìm là x
Một số sách khi xếp thành từng bó 10 cuốn , 12 cuốn , 18 cuốn đều vừa đủ bó
\(=>x\in BC\left\{10,12,18\right\}\)
\(=>BCNN\left\{10;12;18\right\}=180\)
\(=>BC\left\{10;12;18\right\}=\left\{180;360,540,720,900....\right\}\)
mà \(600\le x\le800\)
\(=>x=720\)
vậy số sách cần tìm là 720 cuốn
Goi số sách cần tìn là x
Theo đề có:
X chia hết cho 10,12,18
600 < x < 800
=> x ∈ BC ( 10,12,18)
Phân tích:
10 = 2.5
12 = 22.3
18 = 2 .32
BCNN ( 10,12,18) = 22 .32 . 5 = 180
BC ( 10,12,18) = B ( 180) = { 0, 180, 360, 540 , 720....}
Mà theo đề có:
600 < x < 720
=> x = 720
Vậy số sách cần tìm là: 720 quyển
\(10=2.5\) \(15=3.5\)
\(12=2^2.3\) \(16=2^3\)
\(BCNN\left(10;12;15;16\right)=2^3.3.5=120\)
\(BC\left(10;12;15;16\right)=\left\{120;240;360;480;600;..\dots\right\}\)
Gọi số sách là a
\(\left(a\inℕ\right)\)
Vì khi xếp thành từng bó 12 cuốn, 15 cuốn, 18 cuốn đều thừa 5 cuốn nên a - 5 \(⋮12,15,18\)
\(\Rightarrow a-15⋮BCNN\left(12,15,18\right)=180\)
Mà : \(200\le a\le400\)nên \(185\le a-15\le385\Rightarrow a-15=360\Rightarrow a=375\)
Vậy...
Gọi số sách cần tìm là a ( 100≤≤ a ≤≤ 150)
Theo đề bài, ta có: a⋮⋮ 10 ; a⋮⋮ 12; a ⋮⋮ 15
⇒⇒ a ∈∈ BC( 10; 12; 15)
Ta có: 10=2.5 ; 12=22 . 3 ; 15=3. 5
BCNN( 10; 12; 15) = 22. 3. 5= 60
BC (10; 12; 15) = B(60) = {0;60;120;180;...}{0;60;120;180;...}
Vì 100≤≤ a ≤≤ 150 nên a = 120
Vậy : số sách đó là 120 quyển
Đặt a là số sách đó
Ta có: \(a⋮10;12;15\Rightarrow a\in BC\left(10;12;15\right)\)
Mà \(100< a< 150\)
\(\Rightarrow a=120\)
Vậy số sách đó là 120
gọi a là số sách
a \(⋮\)10; \(⋮\)12; \(⋮\)15
=>a \(\in\)BC ( 10 ; 12 ; 15 ) = B ( 30 ) = { 0 ; 30 ; 60 ; 90 ; 120 ; 150 ; ... }
mà 150 > a > 100
nên a = 120
vậy số sách là 120