Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian xe máy đi từ A đến B là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B về A là: \(\dfrac{x}{45}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{9x}{360}-\dfrac{8x}{360}=\dfrac{90}{360}\)
\(\Leftrightarrow9x-8x=90\)
hay x=90(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 90km
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{40}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)(tmđk)
Vậy sAB là: 90km
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{14}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)
Vậy: Độ dài quãng đường AB là 90km
Gọi quãng đường AB là \(x\left(x>0\right)\left(km\right)\)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B đến A là :\(\dfrac{x}{50}\left(h\right)\)
Do t/g về it ít hơn t/g đi là 30p \(\left(=\dfrac{1}{2}h\right)\)nên ta có :
\(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{50x-40x-1000}{2000}=0\)
\(\Leftrightarrow10x=1000\)
\(\Leftrightarrow x=100\left(n\right)\)
Vậy ....
Gọi độ dài quãng đường AB là \(x\)(km)
ĐK: \(x>0\)
Thời gian người đó đi từ A đến B là \(\dfrac{x}{40}\)(h)
Thời gian người đó đi về là \(\dfrac{x}{40+10}=\dfrac{x}{50}\)(h)
Đổi 30 phút = \(\dfrac{1}{2}\) giời
Theo đề ta có phương trình:
\(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x.5}{40.5}-\dfrac{x.4}{50.5}=\dfrac{1.100}{2.100}\)
\(\Rightarrow5x-4x=100\)
\(\Leftrightarrow x=100\left(tm\right)\)
Vậy quãng đường AB dài 100km
Gọi Quãng đường AB là x ( x > 0, km )
Quãng đường khi về là x + 10 km
Thời gian người đó đi quãng đường AB là \(\frac{x}{25}\)giờ
Thời gian người đó đi quãng đường khi về là \(\frac{x+10}{30}\)giờ
Do thời gian về ít hơn thời gian đi là 20 phút = 1/3 giờ
nên ta có phương trình \(\frac{x}{25}-\frac{x+10}{30}=\frac{1}{3}\Leftrightarrow x=100\)
Vậy Quãng đường AB là 100 km
Gọi x (km) là quãng đường AB :
ĐK : x > 0
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x+15}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 20 phút nên ta có pt :
\(\dfrac{x}{30}-\dfrac{x+15}{40}=\dfrac{1}{3}\)
\(\Leftrightarrow4x-3\left(x+15\right)=40\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=85\left(N\right)\)
Vậy : ...
$20'=\dfrac{1}{3}h$
Gọi $x(km)$ là độ dài quãng đường AB $(x>0)$
Thời gian đi từ A đến B là: $\dfrac{x}{40}(h)$
Vận tốc đi từ B về A là: $40+15=55(km/h)$
Thời gian đi từ B về A là: $\dfrac{x}{55}(h)$
Theo đề bài, ta có phương trình:
$\dfrac{x}{40}-\dfrac{x}{55}=\dfrac{1}{3}$
$⇔(\dfrac{1}{40}-\dfrac{1}{55}).x=\dfrac{1}{3}$
$⇔x=\dfrac{1}{3}:(\dfrac{1}{40}-\dfrac{1}{55})=\dfrac{440}{9}≃49 \ \ \text{(nhận)}$