Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là x (x>0) (km)
-> Thời gian dự định đi là x/32 (h)
Quãng đương còn lại phải đi tiếp là x-32 (km)
-> V mới là 32+4=36 (km/h)
-> Thời gian để đi đến B với V mới là (x-32)/36 (h)
Ta có PT:
Có PT:
1 + (x-32)/36 +1/4 = x/32
( 1 giờ + Thời gian đi với V mới + 15' nghỉ = thời gian dự định)
GIẢI PT
<=> 4x=416
<=> x=104 (TM)
Vậy quãng đường Ab là 104km
Gọi quãng đường AB là x (km, x>0)
Xe dự định đi từ A đến B với vận tốc 35km/h
\(\to\) Thời gian dự định xe đi là \(\dfrac{x}{35}\) (h)
Vì nửa đường thứ nhất vận tốc không thay đổi nhưng phải dừng lại 15p
\(\to\) Thời gian xe đi hết nửa quãng đường thứ nhất là \(\dfrac{\dfrac{x}{2}}+\dfrac{1}{4}=\dfrac{x}{70}+\dfrac{1}{4}\) (h)
Nửa quãng đường thứ hai xe tăng vận tốc thêm 5km/h để đến B đúng như dự định
\(\to\) Thời gian đi nửa quãng đường thứ hai là \(\dfrac{\dfrac{x}{2}}{35+5}=\dfrac{x}{80}\) (h)
Vì xe đến B đúng như thời gian dự định
\(\to\) Ta có pt: \(\dfrac{x}{70}+\dfrac{1}{4}+\dfrac{x}{80}=\dfrac{x}{35}\)
\(\leftrightarrow 8x+140+7x=16x\)
\(\leftrightarrow 15x-16x=-140\)
\(\leftrightarrow -x=-140\)
\(\leftrightarrow x=140\) (TM)
Vậy quãng đường AB là 140km
Lời giải:
Gọi thời gian dự định là $a$ (giờ)
Theo bài ra ta có:
$AB=10a=10.1+(10+10)(a-1-1)$
$\Leftrightarrow 10a=10+20(a-2)$
$\Leftrightarrow a=3$ (giờ)
Độ dài quãng đường $AB$ là: $10a=10.3=30$ (km)
Gọi x km là quãng đường AB (x>0)
Thời gian dự định đi: x/40 (h)
Quãng đường còn phải đi sau khi đã đi 1 giờ: x - 40 (km)
Vận tốc mới: 40 + 5 = 45 (km/h)
Thời gian đi đến B với vận tốc mới: (x - 40) / 45 (h)
15 phút = 1/4 h
Từ các kết quả trên ta có phương trình biểu diễn:
1 + (1/4) + {(x - 40) / 45} = (x/40)
( một giờ đi với vận tốc 40 km + 15 phút nghỉ + thời gian đi với vận tốc mới thì bằng thời gian dự định)
Sau khi quy đồng, khử mẫu và rút gọn ta sẽ có:
5x = 650
=> x = 130 (thỏa mãn)
=> Quãng đường AB dài 130 km.
Gọi độ dài quãng đường AB là x
Theo đề, ta có: \(\dfrac{x}{35}=\dfrac{\dfrac{x}{2}}{35}+\dfrac{1}{4}+\dfrac{\dfrac{x}{2}}{40}\)
=>1/35x-1/70x-1/80x=1/4
=>x=2240