K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

Đáp án D

Có các TH sau:

+) 1 cán sự, 3 học sinh thường, suy ra có C 3 1 . C 27 3 = 8775 cách

+) 2 cán sự, 2 học sinh thường, suy ra có C 3 2 . C 27 2 = 1053 cách

+) 3 cán sự,1 học sinh thường, suy ra có C 3 3 . C 27 1 = 27 cách

Suy ra có tất cả 9885 cách.

22 tháng 7 2018

Đáp án D.

19 tháng 2 2018

Đáp án A

Ta thấy trong các đối tượng ta cần chọn, thì chỉ có lớp phó phong trào không đòi hỏi điều kiện gì nên ta sẽ chọn ở bước sau cùng

Do đó chọn 1 ban cán sự ta cần thực hiện các bước sau

Bước 1: Chọn1 bạn nữ là lớp trưởng có 15 cách

Bước 2: Chọn 1 bạn nam làm lớp phó học tập có 18 cách

Bước 3: Chọn1 bạn nữ là thủ quỹ có 14 cách

Bước 4: Chọn 1 người trong số còn lại làm lớp phó phong trào có 30 cách

Vậy tất cả có cách cử 1 ban cán sự

11 tháng 4 2018

Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.( chú ý  mỗi khối đều có ít hơn 8 học sinh).

Số cách chọn 8 học sinh từ hai khối là:  .

Số cách chọn 8 học sinh bất kì là:  

Số cách chọn thỏa yêu cầu bài toán: 

Chọn D.

NV
25 tháng 7 2021

a.

Chọn 4 bạn bất kì từ 3 lớp: \(C_{12}^4\)

Chọn 4 bạn ko có lớp A: \(C_9^4\)

Chọn 4 bạn ko có lớp B: \(C_8^4\)

Chọn 4 bạn ko có lớp C: \(C_7^4\)

Số cách thỏa mãn: \(C_{12}^4-\left(C_7^4+C_8^4+C_9^4\right)=...\)

b.

Chọn 4 bạn có đúng 1 bạn lớp A: \(C_3^1.C_9^3\)

Số các thỏa mãn:

\(C_{12}^4-\left(3.C_9^3+C_9^4\right)\)

22 tháng 4 2017

Đáp án D

28 tháng 12 2017

 

Chọn B

TH1: Nhóm có đúng 3 học sinh có cách chọn

TH2: Nhóm có đúng 4 học sinh có cách chọn

TH3: Nhóm có đúng 5 học sinh có cách chọn

TH4: Nhóm có đúng 6 học sinh có cách chọn

TH5: Nhóm có đúng 7 học sinh có cách chọn

TH6: Nhóm có đúng 8 học sinh có cách chọn

TH7: Nhóm có đúng 9 học sinh có cách chọn

Vậy tổng số có 24 + 72 + 98 + 76 + 35 + 9 + 1 = 315 cách.

 

4 tháng 8 2016

bài 1

 

26 tháng 8 2021

Th1 5hs, trong đó có 4 hs nam,1 hs nữ: 10C4+10C1 cách

th2 5hs, trong đó có 3hs nam,2 hs nữ :10C3+10C2

th3 5hs, trong đó có 2hs nam,2 hs nữ: t tự 

th4 5hs, trong đó có 1 hs nam, 4hs nữ: t tự th1

tổng số cách 2(10C3+10C2+10C4+10C1)=770 cách

NV
14 tháng 7 2021

Mỗi tổ ít nhất 2 nữ \(\Rightarrow\) ta có 3 trường hợp: (2;2;3); (2;3;2); (3;2;2)

TH1: (2;2;3)

Tổ 1: chọn 2 nữ từ 7 nữ có \(C_7^2\) cách, chọn 8 nam từ 26 nam có \(C_{26}^8\) cách

Tổ 2: chọn 2 nữ từ 5 nữ còn lại: \(C_5^2\) ; chọn 9 nam từ 18 nam còn lại: \(C_{18}^9\)

Tổ 3: chọn 3 nữ từ 3 nữ còn lại: \(C_3^3\) ; chọn 9 nam từ 9 nam còn lại: \(C_9^9\)

\(\Rightarrow C_7^2.C_{26}^8+C_5^3.C_{18}^8+C_2^2.C_{10}^{10}\)

Hoàn toàn tương tự, ở TH2 ta được số cách:

\(C_7^2.C_{26}^8+C_5^3.C_{18}^9+C_2^2.C_9^9\)

TH3 ta được số cách: \(C_7^3.C_{26}^7+C_4^2.C_{19}^9+C_2^2.C_{10}^{10}\)

Cộng 3 trường hợp lại ta được kết quả cần tìm