Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 2 của 5 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_5^2\) ( phần tử)
b)
+) Gọi A là biến cố “Tích các số trên hai thẻ là số lẻ”
+) Để tích các số trên thẻ là số lẻ thì cả hai thẻ bốc được đểu phải là số lẻ. Do đó, số phần tử các kết quả thuận lợi cho biến cố A là tổ hợp chập 2 của 3 phần tử: \(n\left( A \right) = C_3^2\) ( phần tử)
+) Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_3^2}}{{C_5^2}} = \frac{3}{{10}}\)
Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega \right) = 120\)
Gọi A là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”
Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn
Để chọn ra 3 thẻ thuận lợi cho biến cố A ta có 3 khả năng
+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng
+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng
+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng
Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)
Vậy xác suất của biến cố A là: \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)
a) Không gian mẫu \(\Omega = \left\{ {1;2;3;4;5;6;7;8;9;10;11;12} \right\}\). Các kết quả xảy ra có đồng khả năng với nhau.
b) Biến cố \(E = \left\{ {2;3;5;7;11} \right\}\).
c) Phép thử có 12 kết quả có thể xảy ra. Biến cố E có 5 kết quả có lợi.
Vậy xác suất của biến cố E là \(\frac{5}{{12}}\).
Ta có \(n\left( \Omega \right) = C_{11}^2 = 55\).
a) Có 5 số lẻ là \(\left\{ {11;13;15;17;19} \right\}\) nên \(n\left( C \right) = C_5^2 = 10\). Vậy \(P\left( C \right) = \frac{{10}}{{55}} = \frac{2}{{11}}\).
b) Có 6 số chẵn là \(\left\{ {10;12;14;16;18;20} \right\}\) nên \(n\left( D \right) = C_6^2 = 15\). Vậy \(P\left( D \right) = \frac{{15}}{{55}} = \frac{3}{{11}}\).
Gọi số lập được có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}} \) với \(\left( {{a_1},{a_2},{a_3},{a_4},{a_5}} \right) = 1,2,3,4,5\)
Tổng số khả năng xảy ra của phép thử là \(n\left( \Omega \right) = 5!\)
a) Biến cố “a là số chẵn” xảy ra khi chữ số tận cùng là số chẵn, suy ra \({a_5} = \left\{ {2,4} \right\}\)
Số kết quả thuận lợi cho biến cố “a là số chẵn” là \(n = 4!.2\)
Vậy xác suất của biến cố “a là số chẵn” là \(P = \frac{{4!.2}}{{5!}} = \frac{2}{5}\)
b) Biến cố “a chia hết cho 5” xảy ra khi chữ số tận cùng là số 5
Suy ra, số kết quả thuận lợi cho biến cố “a chia hết cho 5” là \(n = 4!.1\)
Vậy xác suất của biến cố “a là số chẵn” là \(P = \frac{{4!.1}}{{5!}} = \frac{1}{5}\)
c) Biến cố “\(a \ge 32000\)” xảy ra khi a có dạng như dưới đây\(\overline {5{a_2}{a_3}{a_4}{a_5}} ;\overline {4{a_2}{a_3}{a_4}{a_5}} ;\overline {34{a_3}{a_4}{a_5}} ;\overline {35{a_3}{a_4}{a_5}} ;\overline {32{a_3}{a_4}{a_5}} \)
Suy ra, số kết quả thuận lợi cho biến cố “\(a \ge 32000\)” là \(n = 2.4! + 3.3!\)
Vậy xác suất của biến cố “\(a \ge 32000\)” là \(P = \frac{{2.4! + 3.3!}}{{5!}} = \frac{{11}}{{20}}\)
d) Để sắp xếp các chữ số của a ta cần thực hiện hai công đoạn
Công đoạn 1: Sắp xếp 2 chữ số chẵn trước có \(2!\) cách
Công đoạn 2: Sắp xếp 3 chũ số lẻ xen vào 3 chỗ trồng tạo bởi 2 chữ số chẵn có \(3!\) cách
Suy ra, số kết quả thuận lợi cho biến cố “Trong các chữ số của a không có hai chữ số lẻ nào đứng cạnh nhau” là \(2!.3!\)
Vậy xác suất của biến cố là \(P = \frac{{2!.3!}}{{5!}} = \frac{1}{{10}}\)
a) Chiều rộng của tấm bìa là \(\overline R = 170 \pm 2mm\), nghĩa là chiều rộng gần đúng \(R = 170\)với độ chính xác \(d = 2\)
Suy ra kích thước chiều rộng nằm trong khoảng \(\left[ {170 - 2;170 + 2} \right]\) hay \(\left[ {168;{\rm{ }}172} \right].\)
Tương tự, chiều dài của tấm bìa là \(\overline D = 240 \pm 2mm\)
Vậy kích thước chiều dài nằm trong khoảng \(\left[ {240 - 2;240 + 2} \right]\) hay \([238;242]\)
b) Chiều rộng gần đúng là 170 mm, chiều dài gần đúng là 240 mm.
Khi đó, diện tích tấm bìa là \(S = 170.240 = 40800\;(m{m^2})\)
Diện tích đúng, kí hiệu \(\overline S \), của tấm bìa trên thỏa mãn:
\(168.238 < \overline S < 172.242 \Leftrightarrow 39984 < \overline S < 41624\)
Do đó \(39984 - 40800 < \overline S - 40800 < 41624 - 40800\) hay \( - 816 < \overline S - S < 824 \Rightarrow \left| {\overline S - S} \right| < 824\)
Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)
Cách 2:
Diện tích tấm bìa là:
\(\overline S = \left( {170 \pm 2} \right)\left( {240 \pm 2} \right) = 170.240 \pm \left( {170.2 + 240.2 + 2.2} \right) = 40800 \pm 824\left( {m{m^2}} \right)\)
Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)
Số phần tử của không gian mẫu \(\left|\Omega\right|=C^2_{20}\)
Gọi A là biến cố: "Tổng hai số trên hai tấm thẻ được rút ra bằng 10."
Gọi \(\left(m,n\right)\) là nghiệm của \(m+n=10\). Phương trình này có tất cả \(C^{2-1}_{10-1}-1=8\) (\(-1\) ở đây là bỏ đi nghiệm \(\left(m;n\right)=\left(5;5\right)\)). Do đó \(\left|A\right|=8\) \(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{8}{C^2_{20}}=\dfrac{4}{95}\)
TH1: tấm chia hết cho 5 là số lẻ
=>Có \(5\cdot C^3_{24}\cdot C^4_{25}\left(cách\right)\)
TH2: tấm chia hết cho 5 là sốchẵn
=>Có \(5\cdot C^3_4\cdot C^4_{25}\left(cách\right)\)
=>n(A)=506000
n(omega)=\(C^8_{50}=536878650\)
=>P=40/42441
a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 3 của 4 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_4^3\) ( phần tử)
b) +) Sự kiện “Tổng các số trên ba tấm bìa bằng 9” tương ứng với biến cố \(A = \left\{ {\left( {4;3;2} \right)} \right\}\)
+) Sự kiện “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp” tương ứng với biến cố \(B = \left\{ {\left( {1;2;3} \right),\left( {2;3;4} \right)} \right\}\)
c) +) Ta có: \(n\left( A \right) = 1\),\(n\left( B \right) = 2\)
+) Vậy xác suất của biến cố A và B là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{4};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)