Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
*Xếp 12 khách vào 3 toa tàu (có thể có toa không có khách): Có 3 12 cách.
* Trừ đi các trường hợp có KHÔNG QUÁ 2 toa có khách: − C 3 2 .2 12
(Chọn ra hai toa có C 3 2 cách. Sau đó xếp tùy ý 12 khách vào 2 toa đã chọn ra này, tức là có thể có một trong hai toa không có khách).
Nhưng như vậy ta đã trừ đi các trường hợp chỉ có 1 toa có khách đến 2 lần nên phải cộng lại số này: + C 3 1 .1 12
* Vậy cách xếp thỏa mãn yêu cầu bài toán là 3 12 − C 3 2 .2 12 + C 3 1 .1 12 = 519156 cách.
Do đó chọn đáp án B.
Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là 4 4 = 256 cách. Suy ra n Ω = 256
Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.
Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có C 5 3 . 4 = 16 cách
Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách
Suy ra n(A) = 16 . 3 = 48
Vậy xác suất của biến cố cần tìm là P A = 48 256 = 3 16
Đáp án B