Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(W = \frac{1}{2} kA^2 => A^2 = \frac{2W}{k} = 8.10^{-4}m^2.\)
Độ dãn của lo xo tại vị trí cân bằng \(\Delta l = \frac{mg}{k}\)
Từ VTCB kéo tới vị trí lò xo dãn 4,5 cm tức là li độ x của lò xo (so với VTCB) là: \(x = 4,5.10^{-2} - \Delta l\)
\(A^2 = x^2 +\frac{v^2}{\omega^2}\)
=> \(8.10^{-4} = (4,5.10^{-2} - \frac{m.10}{100})^2 + \frac{m.0,4^2}{100}\)
=> \(0,01 m^2 - 7,4.10^{-3} m + 1,225.10^{-3} = 0\)
=> \(m = 0,49 kg; \) (loại) hoặc \(m = 0,25 kg; \)(chọn)
=> \(T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{0,25}{100}} = 0,1\pi.(s)\)
Chọn đáp án A
? Lời giải:
+ Lực đàn hồi đổi chiều tại vị trí lò xo không biến dạng.
+ Lực hồi phục (kéo về) đổi chiều tại vị trí cân bằng
+ Thời gian mà lực đàn hồi ngược chiều lực hồi phục khi vật đi từ O đến M (M là vị trí lò xo không biến dạng) và ngược lại
Chọn đáp án A
? Lời giải:
+ Lực đàn hồi đổi chiều tại vị trí lò xo không biến dạng.
+ Lực hồi phục (kéo về) đổi chiều tại vị trí cân bằng
f = 1 2 π g Δ l ⇒ Δ l = 1 c m A = Δ l 2 + v 2 ω 2 = 2 c m ⇒ Δ l = A 2
+ Thời gian mà lực đàn hồi ngược chiều lực hồi phục khi vật đi từ O đến M (M là vị trí lò xo không biến dạng) và ngược lại
Δ t = 2. T 12 = T 6 = 1 30 s
Đáp án A
+ Độ biến dạng của lò xo tại vị trí cân bằng
→ Biên độ dao động của con lắc
+ Trong một chu kì dao động, lực kéo về luôn hướng về vị trí cân bằng, lực đàn hồi lại luôn hướng về vị trí lò xo không biến dạng (có li độ x = - ∆ l 0 như hình vẽ)
→ Thời gian hai lực này ngược chiều nhau là
\(k=8mm??\) xem lại đề bài
\(\omega=\sqrt{\dfrac{k}{m}}=...\left(rad/s\right)\)
\(x=6cm;v=10\sqrt{3}\left(cm/s\right)\Rightarrow A=\sqrt{x^2+\dfrac{v^2}{\omega^2}}=\sqrt{36+\dfrac{\left(10\sqrt{3}\right)^2}{\dfrac{k}{m}}}=....\left(cm\right)\)
bạn ko nói rõ là lò xo dãn hay nén 6 cm thì sao viết đc pt?