K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Vận tốc của vật ở vị trí góc bất kỳ là \(v = \sqrt{2gl(\cos \alpha - \cos \alpha_0)}\)

Lực căng dây tại một vị trí bất kỳ là: \(\tau = mg(3\cos \alpha - 2 \cos \alpha_0)\).

Bạn thay số vào là thu được kết quả.

2 tháng 2 2016

Vận tốc: \(v=\sqrt{2gl(\cos\alpha-\cos\alpha_0)}\)

Lực căng dây: \(T=mg(3\cos\alpha-2\cos\alpha_0)\)

2 tháng 2 2016

bạn có thể cho mình biết là tại sao v và lực căng dây lại được tính như vậy được ko ?

24 tháng 12 2019

21 tháng 4 2019

Đáp án B

Theo điều kiện cân bằng năng lượng   W A = W B

12 tháng 6 2017

20 tháng 1 2017

20 tháng 7 2016

a)  \(h=l-l\cos\alpha_0=1m\)
\(W=W_d+W_t=mgh=1J\)
b) Tính lực căng của dây treo khi vật qua vị trí cân bằng 

Hai lực tác dụng vào vật: \(\overrightarrow{P},\overrightarrow{T}\)
Hợp lực: \(\overrightarrow{F}=\overrightarrow{P}+\overrightarrow{T}=m.\overrightarrow{a_{ht}}\)

\(m\frac{v^2_0}{l}=-P+T\)

\(T=m\frac{v^2_0}{l}+mg\)
\(T=3mg-2mg\cos\alpha_0=2N\)

30 tháng 4 2019

bạn ơi có phải tam giác vuông đâu mà dung h=l-lcosanpha

24 tháng 11 2018

4 tháng 3 2018

Chọn mốc thế năng ở vị trí cân bằng

a. Ta có cơ năng

W = m g z = m g l ( 1 − cos 60 0 ) = 0 , 5.10.1 ( 1 − 0 , 5 ) = 2 , 5 ( J )

b. Theo định luật bảo toàn cơ năng

W A = W B ⇒ m g z A = 1 2 m v B 2 + m g z B ⇒ v B = 2 g ( z A − z B ) ( 1 ) M à   z A = H M = l − O M = l − l cos α 0 z B = l − l cos α  

Thay vào ( 1 ) ta có 

v B = 2 g l ( cos α − cos α 0 ) +   K h i   α = 30 0   ⇒ v B = 2 g l ( cos 30 0 − cos 60 0 ) ⇒ v B = 2.10.1 ( 3 2 − 1 2 ) ≈ 2 , 71 ( m / s )

+   K h i   α = 45 0   ⇒ v B = 2 g l ( cos 45 0 − cos 60 0 ) ⇒ v B = 2.10.1 ( 2 2 − 1 2 ) ≈ 2 , 035 ( m / s )

Xét tai B theo định luật II Newton ta có:  P → + T → = m a →

Chiếu theo phương của dây

T − P y = m a h t ⇒ T − P cos α = m v 2 l ⇒ T − m g cos α = 2 m g ( cos α − cos α 0 ) ⇒ T = m g ( 3 cos α − 2 cos α 0 )

Khi  α = 30 0 ⇒ T = m g ( 3 cos 30 0 − 2 cos 60 0 )

⇒ T = 0 , 5.10 ( 3. 3 2 − 2. 1 2 ) = 7 , 99 ( N )

Khi  α = 45 0   ⇒ T = m g ( 3 cos 45 0 − 2 cos 60 0 )

⇒ T = 0 , 5.10 ( 3. 2 2 − 2. 1 2 ) = 5 , 61   N

Lưu ý: Khi làm trắc nghiệm thì các em áp dụng luôn hai công thức

+ Vận tốc của vật tại vị trí bất kỳ:  v B = 2 g l ( cos α − cos α 0 )

+ Lực căng của sợi dây:  T = m g ( 3 cos α − 2 cos α 0 )

c. Gọi C là vị trí để vật có  v= 1,8m/s

Áp dụng công thức  v C = 2 g l ( cos α − cos α 0 )

1 , 8 = 2.10.1 ( cos α − cos 60 0 ) ⇒ cos α = 0 , 662 ⇒ α = 48 , 55 0

Vật có đọ cao

  z C = l − l cos α = 1 − 1.0 , 662 = 0 , 338 ( m )

d. Gọi D là vị trí vật có độ cao 0,18m

Áp dụng công thức 

z D = l − l cos α ⇒ 0 , 18 = 1 − 1. cos α ⇒ cos α = 0 , 82

Áp dụng công thức 

v D = 2 g l ( cos α − cos α 0 ) = 2.10.1. ( 0 , 82 − 0 , 5 ) = 2 , 53 ( m / s )

e. Gọi E là vị trí 2 w t = w đ  Theo định luật bảo toàn cơ năng  W A = W E

   W A = W d E + W t E = 3 2 W d E ⇒ 2 , 5 = 3 2 . 1 2 . m v E 2 ⇒ v E = 2 , 5.4 3. m = 10 3.0 , 5 = 2 , 581 ( m / s )  

f.  Gọi F là vị trí để 2  w t = 3 w đ

Theo định luật bảo toàn cơ năng   W A = W F

W A = W d F + W t F = 5 3 W t F ⇒ 2 , 5 = 5 3 . m g z F ⇒ z F = 2 , 5.3 5. m . g = 0 , 3 ( m ) M à   z F = l − l cos α F ⇒ 0 , 3 = 1 − 1. cos α F ⇒ cos α F = 0 , 7 ⇒ α F = 45 , 573 0

Mặt khác  v F = 2 g l ( cos α F − cos 60 0 ) = 2.10.1 ( 0 , 7 − 0 , 5 ) = 2 ( m / s )

Xét tại F theo định luật II Newton   P → + T → = m a →

Chiếu theo phương của dây 

− P cos α F + T F = m v F 2 l ⇒ − 0 , 5.10.0 , 7 + T F = 0 , 5. 2 2 1 ⇒ T = 5 , 5 ( N )

Con lắc đơn gồm một sợi dây nhẹ, không dãn, một đầu cố định, đầu kia gắn với vật nhỏ khối lượng m. Bỏ qua mọi lực cản. Đưa vật tới vị trí dây treo lệch góc a, so với phương thẳng đứng rồi thả nhẹ. sau đó vật chuyển động trên 1 cung tròn có tâm là điểm treo dây, bán kính là chiều dài dây. gọi v là vân tốc của vật ở vị trí dây treo lệch góc a so với phương thẳng đứng.Viết biểu thức...
Đọc tiếp

Con lắc đơn gồm một sợi dây nhẹ, không dãn, một đầu cố định, đầu kia gắn với vật nhỏ khối lượng m. Bỏ qua mọi lực cản. Đưa vật tới vị trí dây treo lệch góc a, so với phương thẳng đứng rồi thả nhẹ. sau đó vật chuyển động trên 1 cung tròn có tâm là điểm treo dây, bán kính là chiều dài dây. gọi v là vân tốc của vật ở vị trí dây treo lệch góc a so với phương thẳng đứng.

Viết biểu thức tính cơ năng của vật tại các vị tri đặc biệt và vị trí bất kỳ trong bài.
Cho biết cơ năng của vật có bảo toàn không?
Vận dụng dịnh luật bảo toàn cơ năng hoặc định lý
biến thiên cơ näng để tìm vận tốc hoặc vị trí của
vật ở một vị trí đặc biệt trong bài và một vị trí bất
kỳ (tổng quát)

mọi người ơi cấp cứu, cấp cứu. Mai em kiểm tra rồi em ko bt làm. CẤP CỨUUU

0