K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

20 tháng 6 2019

20 tháng 8 2017

30 tháng 12 2018

28 tháng 3 2022

Gọi O là tâm của hình bình hành ABCD; G = SO∩AM ⇒ G là trọng tâm ΔSAC ⇒ SG/SO = 2/3 ⇒ G cũng là trọng tâm ΔSBD

G ∈ AM ⊂ (P); G ∈ SO ⊂ (SBC) (1)

B' ∈ (P) và B' ∈ SB ⊂(SBC) (2)

D' ∈ (P) và D' ∈ SD ⊂(SBC) (3)

Từ (1); (2); (3) ⇒ G; B'; D' ∈ giao tuyến của (P) và (SBC)

Trong (SBC) vẽ BM//SO//DN (M, N ∈ B'D') ⇒ OG là đường trung bình của hình thang BDNM 

⇒ BM + DN = 2OG = SG

Ta có :

x = SB/SB' = (SB' + BB')/SB' = 1 + BB'/SB' = 1 + BM/SG

y = SD/SD' = (SD' + DD')/SD' = 1 + DD'/SD' = 1 + DN/SG

⇒ x + y = 2 + (BM + DN)/SG = 2 + 1 = 3

1/x + 1/y = SB'/SB + SD'/SD = a/b

⇒ 3a/b = (x + y)(1/x + 1/y) ≥ 2√(xy).2√(1/xy) = 4

⇒ u = a/b ≥ 4/3 tối giản ⇒ GTNN của u = 4/3 xảy ra khi x = y ⇔ SB'SB' = SD/SD' ⇔ B'D'//BD

14 tháng 7 2018

* Số phần tử của không gian mẫu:  Ω = C 100 5 .

*  Trong 100 sản phẩm đó có 8 sản phẩm hỏng  và 92 sản  phẩm không hỏng nên số phần tử của  biến cố A là: n A = C 8 2 . C 92 3 .  

Xác suất của biến cố A :  P A = n A Ω = 299 6402 .

Chọn đáp án B.

NV
25 tháng 4 2019

S A B C D M N H K

\(\Delta_vABC\sim\Delta_vBCD\left(\widehat{BAC}=\widehat{CBD}\right)\) cùng phụ góc \(\widehat{ACB}\)

\(\Rightarrow\frac{AB}{BC}=\frac{BC}{CD}\Rightarrow BC=\sqrt{AB.CD}=a\)

Do MN là đường trung bình \(\Delta ABC\) \(\Rightarrow MN//AC\Rightarrow MN\perp BD\)

\(\Rightarrow BH=BN.cos\widehat{CBD}=\frac{1}{2}BC.\frac{BC}{BD}=\frac{1}{2}\frac{BC^2}{\sqrt{BC^2+CD^2}}=\frac{a\sqrt{5}}{5}\)

\(SH\perp\left(ABCD\right)\Rightarrow\widehat{SBH}=60^0\Rightarrow SH=BH.tan60^0=\frac{a\sqrt{15}}{5}\)

\(\left\{{}\begin{matrix}BD\perp SH\\BD\perp MN\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SNH\right)\)

Từ H kẻ \(HK\perp SN\Rightarrow HK\) là đường vuông góc chung của SN và BD

\(\Rightarrow HK=d\left(SN;BD\right)\)

\(HN=\sqrt{BN^2-BH^2}=\frac{a\sqrt{5}}{10}\)

Áp dụng hệ thức lượng cho tam giác vuông SHN:

\(\frac{1}{HK^2}=\frac{1}{SH^2}+\frac{1}{NH^2}\Rightarrow HK=\frac{SH.NH}{\sqrt{SH^2+NH^2}}=\frac{a\sqrt{195}}{65}\)