Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AE là tia phân giác của góc BAD
➡️Góc BAE = góc EAD = góc BAD ÷ 2 (1)
Xét hình thang ABCD có BC // AD
➡️Góc AEB = góc EAD ( 2 góc so le trong) (2)
Từ (1) và (2) ➡️góc BAE = góc AEB
➡️∆ ABE cân tại B
➡️BA = BE (đpcm)
b, Vì ∆ ABE cân tại B
➡️BF là tia phân giác đồng thời là đg cao
➡️BF vuông góc với AE
Ta có BF là tia phân giác đồng thời là đg trung tuyến
➡️AF = EF = AE ÷ 2 = 8 ÷ 2 = 4 (cm)
Xét ∆ ABF vuông tại F
➡️AF2 + BF2 = AB2 ( pitago)
➡️BF2 = AB2 - AF2
➡️BF2 = 52 - 42
➡️BF = 3 (cm)
Hok tốt nhé~
Trên tia đối tia AB lấy M sao cho AM=KC
ΔMAD = ΔKCD (c.g.c) ⇒ ˆMDA = ˆKDC⇒ˆMDK = ˆADC = 90∘
Ta có: ˆMDA+ˆAMD=90∘;ˆMDE+ˆEDK=90∘MDA^+AMD^=90∘;MDE^+EDK^=90∘
Mà ˆMDA=ˆKDC=ˆEDK⇒ˆEMD=ˆEDM⇒DE=ME=MA+EA=CK+EAMDA^=KDC^=EDK^⇒EMD^=EDM^⇒DE=ME=MA+EA=CK+EA
câu a ta có : <MAE = 90
suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )
gọi n là giao điểm của EH và CD
vì <MND =90 độ suy ra <NMD +<MPN=90độ
vì cùng phụ nhau với < m suy ra <MEA =<MDN
xét tam giác ACD và tam giác AME :
AD =AE (GT)
<MEA=<MDN (cmt)
<CAD =<MAE =90độ (do AC vuông góc với MB )
SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)
mik chỉ làm đc câu a thôi nha
A B C D O
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
AE+ KC ???????
j z pn