Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
<=> \(\frac{x-2}{7}.\frac{x+3}{5}.\frac{x+4}{3}=0\)
<=> \(\frac{x-2}{7}=0\)hoặc \(\frac{x+3}{5}=0\); \(\frac{x+4}{3}=0\)
Nếu \(\frac{x-2}{7}=0\)<=> \(x-2=0\)<=> \(x=2\)
Nếu \(\frac{x+3}{5}=0\)<=> \(x+3=0\) <=> \(x=3\)
Nếu \(\frac{x+4}{3}=0\)<=> \(x+4=0\)<=> \(x=4\)
Vây x= 2 hoặc 3; 4
mình cũng không chắc lắm
\(a,x\ge\frac{1}{3}\)thì ta có : \(A=2.\left(3x-1\right)-4\left(x+5\right)\)
\(=6x-2-4x-20=2x-22\)
\(x< \frac{1}{3}\)thì ta có : \(A=2.\left(1-3x\right)-4\left(x+5\right)\)
\(=2-6x-4x-20=-10x-18\)
\(b,x\ge2\)thì ta có : \(B=10-4.\left(x-2\right)\)
\(=10-4x+8=18-4x\)
\(x< 2\)thì ta có : \(B=10-4.\left(2-x\right)\)
\(=10-8+x=x+2\)
\(c,x\ge-7\)thì ta có : \(C=4.\left(2x+3\right)-\left(x+7\right)\)
\(=8x+12-x-7=7x+5\)
\(x< -7\)thì ta có : \(C=4.\left(2x+3\right)-\left(-x-7\right)\)
\(=8x+12+x+7=9x+19\)
cho mk hỏi cậu dcv_ new là tại sao lại làm như thế, sao lại biến đổi tất cả dấu gttđ thành dấu ngoặc đơn ạ
a)Ta có : /a+b/ \(\le\)/a/+/b/ ( dấu bằng xảy ra <=> 0 \(\le\)ab) (1)
A= /x+2/+/x-3/
=/x+2/+/3-x/
Theo (1 ) ta được : /x+2+3-x/ \(\le\)/x+2/ +/3-x/
=> 5 \(\le\)/x+2/+/3-x/ hay 5 \(\le\)/x+2/+/x-3/ = A
Vậy GTNN của A là 5 x=-2 hoặc x=3
b)GTNN của B là 9
a) Ta có: /x - 3/ = /3 - x/
=>A = /x + 2/ + /x - 3/ = /x + 2/ + /3 - x/ lớn hơn hoặc bằng /x + 2 + 3 - x/
Mà /x + 2 + 3 - x/ = /5/ = 5
=>A lớn hơn hoặc bằng 5
Đẳng thức xảy ra khi: (x + 2)(3 - x)=0
=>x = -2 hoặc x = 3
Vậy giá trị nhỏ nhất của A là 5 khi x = -2 hoặc x = 5
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
\(\frac{x-2}{x-1}=\frac{x+4}{x-7}\) Đk : x \(\ne\)1 ; 7
=> ( x - 2 ) . ( x - 7 ) = ( x - 1 ) . ( x + 4 )
=> x ( x - 7 ) - 2 ( x - 7 ) = x ( x - 1 ) + 4 ( x - 1 )
=> x 2 - 7x - 2x + 14 = x 2 - x + 4x - 4
=> - 7x - 2x + x - 4x = - 4 - 14
=> - 12 x = - 18
=> x = \(\frac{3}{2}\)
a, ( 44 - x ) / 3 = ( x - 12 ) / 5
=> 5 ( 44 - x ) = 3 ( x - 12 )
220 - 5x = 3x - 36
- 5x - 3x = - 36 - 220
- 8 x = - 256
x = 32
b , ( 3 - x ) / 4 = ( 2x + 7 ) / 5
=> 5 ( 3 - x ) = 4 ( 2x + 7 )
15 - 5x = 8 x + 28
- 5 x - 8 x = 28 - 15
- 13 x = 13
x = -1
a, \(\frac{\left(44-x\right)}{3}=\frac{\left(x-12\right)}{5}\)
=> (44 - x) . 5 = (x - 12) . 3
=> 44 - x . 5 = x - 12 .3
=> 44 - x . 5 = x - 36
=> x5 + x = - 36 - 44
=> x5 + x = - 80
=> x . (5 + 1) = - 80
=> x . 6 = - 80
=> x = - 80 : 6
=> x = - 13,3
b, \(\frac{\left(3-x\right)}{4}=\frac{\left(2x+7\right)}{5}\)
=> (3 - x) . 5 = (2x + 7) . 4
=> 3 - x . 5 = 2x + 7 . 4
=> 3 - x . 5 = 2x + 28
=> -x . 5 + 2x = 28 - 3
=> -x . 5 + 2x = 25
=> x . 5 + 2x = 25
=> x . (5 + 2) = 25
=> x . 7 = 25
=> x = 25 : 7
=> x = 3,57