K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

\(A=x^2-4xy+4y^2+2x-4y+1+y^2+2y+1+2008\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\)

\(\Rightarrow A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

26 tháng 11 2021

mình cảm ơn ạ.

30 tháng 12 2021

a: \(=\dfrac{x+2}{x+2}=1\)

b: \(=\dfrac{2x+6}{x+3}=2\)

Câu 1: A
Câu 2: B

Câu 3: D
Câu 4: A

Câu 5: C

Câu 6: B

Câu 7: A

Câu 9: B

 

30 tháng 9 2021

\(5,\\ a,=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\\ b,=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-16x^2=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\\ c,=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+1\\ =x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^6-x^4+x^3-x+1\right)\left(x^2+x+1\right)\)

30 tháng 9 2021

\(d,=x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\\ =\left(x^4-x^2+1\right)\left(x^4+2x^2+1-x^2\right)\\ =\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\\ e,=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\\ =x^3\left(x^2+x+1\right)-x^2\left(x^2+x+x\right)+\left(x^2+x+1\right)\\ =\left(x^3-x^2+1\right)\left(x^2+x+1\right)\\ f,=x^3+2x^2-x^2-2x+2x+4\\ =\left(x+2\right)\left(x^2-x+2\right)\\ g,=x^4+2x^2+1-25=\left(x^2+1\right)^2-25\\ =\left(x^2+1-5\right)\left(x^2-1-5\right)=\left(x^2-4\right)\left(x^2-6\right)=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

\(h,=x^3-2x^2+2x^2-4x+2x-4=\left(x-2\right)\left(x^2+2x+2\right)\\ i,=a^4-4a^2b^2+4b^4-4a^2b^2=\left(a^2-2b^2\right)^2-4a^2b^2\\ =\left(a^2-2ab-2b^2\right)\left(a^2+2ab-2b^2\right)\)

29 tháng 5 2022

Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN

Ta có: \(x^2+2\ge0\forall x\)

\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)

Vậy GTLN của A là 1/2

=> A

29 tháng 5 2022

Câu 2: B đạt GTLN khi và chỉ khi x2 đạt giá trị nhỏ nhất

⇔ x2=0 ⇒B = 10 - 0= 0 

  Chọn đáp án B nhe

Câu 3: Có A= 4x - 2x2= (-2x+ 4x - 1) + 1=\(-2\left(x^2-2x+1\right)+1\)

⇔ A= \(-2\left(x-1\right)^2+1\le1\)

Chọn đáp án B nha

 

a: Xét ΔEAD và ΔECG có

góc EAD=góc ECG

góc AED=góc CEG

=>ΔEAD đồng dạng với ΔECG

=>AD/CG=ED/EG

=>AD*EG=ED*CG

b: Xét ΔHEG và ΔHCB có

góc HEG=góc HCB

góc EHG=góc CHB

=>ΔHEG đồng dạng với ΔHCB

=>HE/HC=HG/HB

Xét ΔHAB và ΔHCG có

góc HAB=góc HCG

góc AHB=góc CHG

=>ΔHAB đồng dạng với ΔHCG

=>HA/HC=HB/HG

=>HC/HA=HG/HB

=>HC/HA=HE/HC

=>HC^2=HA*HE

c: HI//BA

=>HI/BA=CH/CA=CI/CB

HI//EG

=>HI/EG=BI/BC

HI/BA=CI/CB

HI/BA+HI/EG=BI/BC+CI/BC=1

=>HI(1/BA+1/EG)=1

=>1/BA+1/EG=1/HI

8 tháng 10 2017

(x^2-6x+8)(x^2-8x+15)+1

=(x^2-4x-2x+8)(x^2-5x-3x+15)+1

=(x(x-4)-2(x-4))(x(x-5)-3(x-5))+1

=(x-4)(x-2)(x-5)(x-3)+1

=(x-2)(x-5)(x-3)(x-4)+1

=(x^2-7x+10)(x^2-7x+12)+1

Gọi a=x^2-7x+11, ta có

(a-1)(a+1)+1

= a2 - 1 + 1

= a2

= (x2 - 7x + 11)2

10 tháng 7 2017

\(x^5+x^4+1\)

\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^3.\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

10 tháng 7 2017

cảm ơn bạn nhiều, không biết còn cách không? Mong nhận đượ giúp đỡ!

1: Xét ΔABD vuông tại A và ΔDAC vuông tại D có

góc ABD=góc DAC

=>ΔABD đồng dạng với ΔDAC

2: ΔABD đồng dạng với ΔDAC

=>BD/AC=AB/DA=AD/DC

=>AD/16=BD/AC=18/DA

=>AD^2=16*18=288

=>AD=12căn 2(cm)

AC=căn AD^2+DC^2=4căn 82(cm)