Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
71.
\(\left\{{}\begin{matrix}BB'\perp\left(ABCD\right)\\BB'\in\left(ABB'A'\right)\end{matrix}\right.\) \(\Rightarrow\left(ABCD\right)\perp\left(ABB'A'\right)\)
74.
\(\left\{{}\begin{matrix}DD'\perp\left(ABCD\right)\\DD'\in\left(CDD'C'\right)\end{matrix}\right.\) \(\Rightarrow\left(ABCD\right)\perp\left(CDD'C'\right)\)
Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)
Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)
Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)
Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)
Ta có:
\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)
\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{3\left(a+b+c\right)}{ab+bc+ca}\)
\(\Rightarrow a+b+c\ge\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{ab+bc+ca}{abc}\right)\ge\dfrac{3}{16}\left(\dfrac{a+b+c}{ab+bc+ca}\right)\)
\(\Rightarrow ab+bc+ca\ge\dfrac{3}{16}\)
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\dfrac{a+c}{2}}+\sqrt{\dfrac{a+c}{2}}\ge3\sqrt[3]{\dfrac{\left(a+b\right)\left(a+c\right)}{2}}\)
\(\Rightarrow\left(\dfrac{1}{a+b+\sqrt{2\left(a+c\right)}}\right)^3\le\dfrac{2}{27\left(a+b\right)\left(a+c\right)}\)
Tương tự và cộng lại:
\(P\le\dfrac{2}{27}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\)
\(P\le\dfrac{4}{27}.\dfrac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}.\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Rightarrow P\le\dfrac{4}{27}.\dfrac{a+b+c}{\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\dfrac{1}{6\left(ab+bc+ca\right)}\le\dfrac{1}{6.\dfrac{3}{16}}=\dfrac{8}{9}\)
Giả thiết suy ra MN là đường trung bình tam giác ABC \(\Rightarrow MN||BC\)
Mà \(\left\{{}\begin{matrix}MN=\left(DMN\right)\cap\left(ABC\right)\\BC=\left(BCD\right)\cap\left(ABC\right)\end{matrix}\right.\)
Và D là 1 điểm chung của (BCD) và (DMN)
\(\Rightarrow\) Giao tuyến của (BCD) và (DMN) phải là 1 đường thẳng qua D và song song MN (hoặc BC)
Khoảng cách từ M để ABC bằng MA
Khoảng cách từ EF đến SAB bằng EM = AF
Khá dễ dàng nhận ra do tính chất đường trung bình nên tam giác \(A_1B_1C_1\) chia tam giác ABC thành 4 tam giác có diện tích bằng nhau
\(\Rightarrow S_{A_1B_1C_1}=\dfrac{1}{4}S_{ABC}\)
Do đó \(S_1;S_2...;S_{50}\) lập thành 1 cấp số nhân với \(u_1=S_1=\dfrac{6}{4}=\dfrac{3}{2}\) và \(q=\dfrac{1}{4}\)
\(\Rightarrow S\left(50\right)=\dfrac{3}{2}.\dfrac{1-\left(\dfrac{1}{4}\right)^{50}}{1-\dfrac{1}{4}}\)
bài này mình gọi cttq Un=an^3+bn^2+cn+d. Khi thay n=1 thì = 6, n=2 thi Un=-4... đúng ko ạ
Hướng giải đó đúng rồi đấy, với dãy số thì cách đơn giản nhất là đưa về đa thức (chắc người ra đề cũng nghĩ vậy nên kết quả khá đẹp: a=-1, b=2, c=-1, d=6
Gọi số học sinh nam là a (18<a<36)
Số học sinh nam biết bơi là b, số học sinh nữ biết bơi là c (lẻ)
\(\Rightarrow\dfrac{C_b^1.C_c^1}{C_a^1.C_{36-a}^1}=\dfrac{140}{299}\)
\(\Rightarrow299bc=140a\left(36-a\right)\)
Do \(a+36-a=36\) chẵn \(\Rightarrow\) a và \(36-a\) cùng tính chẵn lẻ
Mặt khác 299 và 140 nguyên tố cùng nhau \(\Rightarrow a\left(36-a\right)⋮299\left(=13.23\right)\)
Do 18<a<36 \(\Rightarrow\) mỗi số a và 36-a không thể đồng thời chia hết 13 và 23
\(\Rightarrow\) a chia hết cho 13 hoặc 23
TH1: \(a⋮13\Rightarrow a=26\Rightarrow36-a=10\) không chia hết 23 (loại)
TH2: \(a⋮23\Rightarrow a=23\Rightarrow36-a=13\) (thỏa mãn)
\(\Rightarrow bc=140\left(=4.5.7\right)\)
Do c lẻ, và \(c< 36-a=13\), đồng thời \(b< a=23\)
TH1: \(c=5\Rightarrow b=28>a\left(ktm\right)\)
TH2: \(c=7\Rightarrow b=20\) (thỏa mãn)
Vậy có 20 học sinh nam biết bơi
em cảm ơn thầy nhiều lắm ạaaaaaaaaaaaaaaaaaaaa