K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2019

Xét a = b = c = 1 thì thỏa mãn bài ra

Xét a ,b,c khác 1. do a,b,c có vai trò như nhau nên giả sử \(a\le b\le c\)

Áp dụng BĐT cô-si cho 3 số a+b+1,1-a,1-b, ta có :

\(\left(a+b+1\right)\left(1-a\right)\left(1-b\right)\le\left(\frac{a+b+1+1-a+1-b}{3}\right)^3=1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\le\frac{1}{a+b+1}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\frac{1-c}{a+b+1}\)

Mà \(\frac{a}{b+c+1}\le\frac{a}{a+b+1};\frac{b}{a+c+1}\le\frac{b}{a+b+1}\)

\(\Rightarrow\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}\le\frac{a}{a+b+1}+\frac{b}{a+b+1}+\frac{c}{a+b+1}\)

do đó : \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\le\frac{a+b+c}{a+b+1}+\frac{1-c}{a+b+1}=1\)

dấu " = " xảy ra khi a = b = c = 0

vậy ...

16 tháng 9 2017

đề thiếu

17 tháng 9 2017

Đặt \(a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}\) là ra bạn KK

hay ko = hên :)) nghĩ bừa cái ra lun 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)\(\Leftrightarrow\)\(\frac{1}{a}+1=1-\frac{1}{b}+1-\frac{1}{c}\)

\(\Leftrightarrow\)\(\frac{a+1}{a}=\frac{b-1}{b}+\frac{c-1}{c}\ge2\sqrt{\frac{\left(b-1\right)\left(c-1\right)}{bc}}\)

Tương tự ta cũng có : 

\(\frac{b+1}{b}\ge2\sqrt{\frac{\left(c-1\right)\left(a-1\right)}{ca}};\frac{c+1}{c}\ge2\sqrt{\frac{\left(a-1\right)\left(b-1\right)}{ab}}\)

Nhân theo vế ta được : 

\(\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{abc}\ge8\sqrt{\frac{\left(a-1\right)^2\left(b-1\right)^2\left(c-1\right)^2}{a^2b^2c^2}}=\frac{8\left(a-1\right)\left(b-1\right)\left(c-1\right)}{abc}\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le\frac{1}{8}\left(a+1\right)\left(b+1\right)\left(c+1\right)\) ( đpcm ) 

...

giả sử a>(=)b>(=)c

5 tháng 7 2018

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)

Chúc bạn học tốt

3 tháng 3 2019

Ta có \(VT=a^2+b^2+c^2+2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

  \(\Leftrightarrow VT=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab^2+bc^2+ca^2\right)\) (Vì abc=1)

ÁP dụng bđt Cô-si cho 3 số dương, ta có:\(a^2+\frac{1}{b^2}+ab^2\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)

\(b^2+\frac{1}{c^2}+bc^2\ge3b\)            \(c^2+\frac{1}{a^2}+ca^2\ge3c\)

\(\Rightarrow VT\ge3\left(a+b+c\right)+\left(ab^2+bc^2+ca^2\right)\ge3\left(a+b+c\right)+3\sqrt[3]{a^3b^3c^3}=3\left(a+b+c+1\right)\)     Vì abc=1. Dấu bằng xảy ra khi a=b=c=1

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)