K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2021

\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{k\pi}{2}\)

\(0< \dfrac{k\pi}{2}< 2017\pi\Rightarrow0< k< 4034\)

Có \(4033\) nghiệm (tất cả các đáp án đều sai)

30 tháng 7 2021

Giống nhau tất thảy.

NV
30 tháng 7 2021

k ở đây được hiểu là "một số nguyên bất kì", giống hay khác nhau đều được

Ví dụ: 

\(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Thì "k" trong \(\dfrac{\pi}{6}+k2\pi\) và "k" trong \(\dfrac{5\pi}{6}+k2\pi\) không liên quan gì đến nhau (nó chỉ là 1 kí hiệu, có thể k trên bằng 0, k dưới bằng 100 cũng được, không ảnh hưởng gì, cũng có thể 2 cái bằng nhau cũng được).

Khi người ta ghi 2 nghiệm đều là "k2pi" chủ yếu do... lười biếng (kiểu như mình). Trên thực tế, rất nhiều tài liệu cũ họ ghi các kí tự khác nhau, ví dụ 1 nghiệm là \(\dfrac{\pi}{6}+k2\pi\), 1 nghiệm là \(\dfrac{5\pi}{6}+n2\pi\) để tránh học sinh phát sinh hiểu nhầm đáng tiếc rằng "2 cái k phải giống hệt nhau về giá trị". 

NV
4 tháng 8 2021

Đây là 1 lời giải sai em

Đơn giản vì phương trình gốc không thể giải được

5 tháng 8 2021

Em cảm ơn ạ 

NV
4 tháng 8 2021

\(\Leftrightarrow2cos^2x-1-\left(2m-3\right)cosx+m-1=0\)

\(\Leftrightarrow2cos^2x-\left(2m-3\right)cosx+m-2=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(cosx-m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cosx=m-2\end{matrix}\right.\)

Do \(cosx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{3}+k2\pi\) ko có nghiệm thuộc khoảng đã chi

\(\Rightarrow cosx=m-2\) có nghiệm thuộc \(\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\)

Ta có \(x\in\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\Rightarrow cosx\in\left(-1;0\right)\)

\(\Rightarrow-1< m-2< 0\)

\(\Rightarrow1< m< 2\)

NV
29 tháng 7 2021

\(\Leftrightarrow cosx+sinx+\dfrac{cosx+sinx}{sinx-cosx}=0\)

\(\Leftrightarrow\left(cosx+sinx\right)\left(1+\dfrac{1}{sinx-cosx}\right)=0\)

Chuyển vế rồi đặt nhân tử chung thôi em

NV
8 tháng 8 2021

Như vậy sẽ có rất nhiều trường hợp thiếu nghiệm, đó là khi \(a=d\) (mất 1/2 số điểm đó em)

Ví dụ: giải phương trình

\(2sin^2x+3sinx.cosx+cos^2x=2\)

Trường hợp này ko xét \(cosx=0\) là mất nửa số điểm rồi (mất hẳn 1 họ nghiệm)

NV
23 tháng 10 2021

Cách 1 chắc chắn sai vì pt d' ko cùng phương với d

Còn sai ở đâu thì nhìn cách làm rối loạn quá nên ko biết

NV
23 tháng 10 2021

Làm cách 1 theo kiểu "cơ bản" thì:

\(A\left(-1;1\right)\Rightarrow\left\{{}\begin{matrix}x_{A'}=-3.\left(-1\right)+\left(1-\left(-3\right)\right).\left(-1\right)=-1\\y_{A'}=-3.1+\left(1-\left(-3\right)\right).3=9\end{matrix}\right.\) \(\Rightarrow A'\left(-1;9\right)\)

\(B\left(2;-1\right)\Rightarrow\left\{{}\begin{matrix}x_{B'}=-3.2+\left(1-\left(-3\right)\right).\left(-1\right)=-10\\y_{B'}=-3.\left(-1\right)+\left(1-\left(-3\right)\right).3=15\end{matrix}\right.\) \(\Rightarrow B'\left(-10;15\right)\)

\(\Rightarrow\overrightarrow{A'B'}=\left(-9;6\right)=3\left(-3;2\right)\)

Phương trình A'B':

\(2\left(x+1\right)+3\left(y-9\right)=0\Leftrightarrow2x+3y-25=0\)

3 tháng 5 2022

18C

22D

26B

Giải thích thêm:

ta có: v=s'(t)=3t²-6t+6

a=s"(t)=6t-6

Thời điểm gia tốc bị triệt tiêu khi a=0

⇔6t-6=0

⇔t=1

Vậy v=3.1²-6.1+6=3 (m/s)

32A

34C

35A

3 tháng 5 2022

cho mình hỏi là tại sao ở câu 26 lại phải đạo hàm thêm lần nữa vậy?