Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a(a+6)+10>0`
`<=>a^2+6a+10>0`
`<=>a^2+6a+9+1>0`
`<=>(a+3)^2+1>0` luôn đúng
Bài 1:
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2-4x^2+4x-1=0\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)
Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm.
a: |2x|=x-4
TH1: x>=0
=>2x=x-4
=>x=-4(loại)
TH2: x<0
=>-2x=x-4
=>-3x=-4
=>x=4/3(loại)
b: 7-|2x+1|=x
=>|2x+1|=7-x
TH1: x>=-1/2
=>2x+1=7-x
=>3x=6
=>x=2(nhận)
TH2: x<-1/2
=>2x+1=x-7
=>x=-8(nhận)
\(\left|2x\right|=x-4\)
\(TH_1:x\ge0\\ 2x=x-4\Leftrightarrow2x-x=-4\Leftrightarrow x=-4\left(ktm\right)\)
\(TH_2:x< 0\\\Leftrightarrow-2x=x-4\Leftrightarrow-2x-x=-4\Leftrightarrow-3x=-4\Leftrightarrow x=\dfrac{4}{3}\left(ktm\right) \)
Vậy pt vô nghiệm.
\(7-\left|2x+1\right|=x\\ \Leftrightarrow\left|2x+1\right|=7-x\)
\(TH_1:x\ge-\dfrac{1}{2}\)
\(2x+1=7-x\Leftrightarrow2x+x=7-1\Leftrightarrow3x=6\Leftrightarrow x=2\left(tm\right)\)
\(TH_2:x< -\dfrac{1}{2}\\ -2x-1=7-x\Leftrightarrow-2x+x=7+1\Leftrightarrow-x=8\Leftrightarrow x=-8\left(tm\right)\)
Vậy \(S=\left\{-8;2\right\}\)
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
- Thấy : \(\dfrac{1}{1}\ne\dfrac{3}{12}\)
=> Hai đường thẳng cắt nhau tại 1 điểm .
a, - Ta có : Hai đường thẳng cắt nhau tại điểm bên trái trục tung .
=> x < 0
- Xét phương trình hoành độ giao điểm :\(12x+5-m=3x+3+m\)
\(\Leftrightarrow x=\dfrac{2m-2}{9}< 0\)
\(\Rightarrow m< 1\)
Vậy ...
b, - Hai đường thẳng cắt nhau tại điểm trong góc phần tư thứ 2 .
\(\Rightarrow\left\{{}\begin{matrix}y>0\\x< 0\end{matrix}\right.\)
Ta có : \(\left\{{}\begin{matrix}y=12x+5-m\\4y=4\left(3x+3+m\right)=12x+12+4m\end{matrix}\right.\)
\(\Rightarrow3y=12x+12+4m-12x-5+m=5m+7>0\)
\(\Rightarrow m>-\dfrac{7}{5}\)
Mà \(m< 1\)
\(\Rightarrow-\dfrac{7}{5}< m< 1\)
Vậy ...
Nếu như em vẽ trên kia, thì gọi tâm đối xứng của hình E là $I$ đi.
Hình E có tâm đối xứng I thì bất kỳ 1 điểm nào thuộc hình E cũng có điểm đối xứng với nó qua I thuộc hình E.
Điều này không đúng khi em lấy thử 1 điểm (đen) như hình: