Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
tính giá trị C khó quá nên mình làm có đc 1 nửa thôi, sorry nha
tham khảo
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
a: Vì x,y là hai đại lượng tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\dfrac{-3}{5}:\dfrac{1}{9}\cdot3=\dfrac{-3}{5}\cdot27=-\dfrac{81}{5}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\) nên \(\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: \(x_2=5;y_2=-2\)
Giải:
Do x và y là 2 đại lượng tỉ lệ thuận nên:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}\Rightarrow\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow\frac{y_1}{6}=\frac{y_2}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y_1}{6}=\frac{y_2}{12}=\frac{y_2-y_1}{12-6}=\frac{4}{6}=\frac{2}{3}\)
+) \(\frac{y_1}{6}=\frac{2}{3}\Rightarrow y_1=4\)
+) \(\frac{y_2}{12}=\frac{2}{3}\Rightarrow y_2=8\)
Vậy \(y_1=4;y_2=8\)
Ta cộng cả ba đa thức vói nhau có :
$A+B+C = (16x^4-8x^3y+7x^2y^2-9y^4) + (-15x^4+3x^3y - 5x^2y^2-6y^4) + (5x^6y+ 3x^2y^2+17y^4+1)$
$ = x^4 + 5x^2y^2 + 2y^4 + 1 > 0 $
Do đó một trọng ba đa thức trên có giá trị dương với mọi x,y.
M(x)=x^2+7x-8=0
(=)x^2=0 hay 7x-8=0
(=)x=0 hay 7x=0+8
(=) 7x=8
(=) x=8:7
(=) x=8/7(8 phần 7)
Vậy X=0 hay x=8/7 là ngiệm của M(x)
Chịu thôi mới học tiểu học à !
ma ma ma con ma uống nước Cocacola la la la !
\(\text{Gọi hstl là }a\\ \Rightarrow x_1y_1=x_2y_2=a\\ \Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}=\dfrac{y_1}{5}=\dfrac{y_2}{6}=\dfrac{8y_1-5y_2}{40-30}=\dfrac{50}{10}=5\\ \Rightarrow\left\{{}\begin{matrix}y_1=25\\y_2=30\end{matrix}\right.\\ \Rightarrow a=x_1y_1=25\cdot6=150\)