Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x + 1)(x - 3 ) - x^2 = 2 ( x - 2 )`
`<=>x^2 - 3x + x - 3 - x^2 = 2x - 4`
`<=> x^2 - x^2 - 3x + x - 2x = - 4 + 3`
`<=> -4x = -1`
`<=> x = 1 / 4`
Vậy `S = { 1 / 4 }`
a.\(\left(x+1\right)\left(x-3\right)-x^2=2\left(x-2\right)\)
\(\Leftrightarrow x^2-3x+x-3-x^2=2x-4\)
\(\Leftrightarrow-4x=-1\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
b.\(\dfrac{3}{x+3}+\dfrac{x}{x-3}=1\) ;\(ĐK:x\ne\pm3\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)+x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow3\left(x-3\right)+x\left(x+3\right)=\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow3x-9+x^2+3x=x^2-9\)
\(\Leftrightarrow6x=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
c.\(\left|x+7\right|=3x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=3x+1;x\ge-7\\-x-7=3x+1;x< 7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x=t\)
\(\left(t+10\right)\left(t+12\right)-8=t^2+22t+120-8\)
\(=t^2+22t+112=\left(t+8\right)\left(t+14\right)\)
Theo cách đặt \(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
a) -4x2 + 8x - 4
= - (4x2 - 8x + 4)
= - (2x - 2)2
b) -x52 + 10 x - 5
= - 5(x2 - 2x + 1)
= - 5(x - 1)2
Bài 8
a, \(A=a^2+b^2=\left(a+b\right)^2-2ab\Rightarrow S^2-2P\)
b, \(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)
\(\Rightarrow S\left(S^2-3P\right)=S^3-3PS\)
c, \(C=a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=\left[\left(a+b\right)^2-2ab\right]^2-2\left(ab\right)^2\)
\(\Rightarrow\left(S^2-2P\right)^2-2P^2\)
Bài 2:
a) Gọi giao điểm của AC và MD là O
Vì M đối xứng với D qua AC nên AC là đường trung trực của MD
Suy ra: AC vuông góc với MD tại trung điểm của MD
hay O là trung điểm của MD
Xét ΔABC có
M là trung điểm của BC(gt)
MO//AB(cùng vuông góc với AC)
Do đó: O là trung điểm của AC
Xét tứ giác AMCD có
O là trung điểm của đường chéo AC(cmt)
O là trung điểm của đường chéo MD(cmt)
Do đó: AMCD là hình bình hành
mà AC⊥MD
nên AMCD là hình thoi
Áp dụng định lý Ta-lét ta có:
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\\
\Rightarrow\dfrac{2}{4}=\dfrac{3}{x}\\
\Rightarrow x=3:\dfrac{1}{2}\\
\Rightarrow x=6\left(cm\right)\)
Câu 1: A
Câu 2: B
Câu 3: C
Câu 4: D
Câu 5: A
Câu 6: C
A
B
C
D
A
C