K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

Cậu có thể giải hộ mình được không?

a: \(\Leftrightarrow\left\{{}\begin{matrix}6x=-12\\x-2y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\2y=x+8=-2+8=6\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(-2;3\right)\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\x-2y=5\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in R\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}3x-3y=9\\3x-3y=1\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}-5y=5\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)

18 tháng 12 2021

\(=\dfrac{x+6\sqrt{x}+5+x-5\sqrt{x}-x+9\sqrt{x}+20}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x+10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\\ =\dfrac{\left(\sqrt{x}+5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}+5}{\sqrt{x}-5}\)

a: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

b: Ta có: \(\widehat{KOA}+\widehat{BOA}=\widehat{KOB}=90^0\)

\(\widehat{KAO}+\widehat{COA}=90^0\)(ΔOCA vuông tại C)

mà \(\widehat{BOA}=\widehat{COA}\)

nên \(\widehat{KOA}=\widehat{KAO}\)

=>KA=KO

d: Xét (O) có

\(\widehat{ACI}\) là góc tạo bởi tiếp tuyến CA và dây cung CI

\(\widehat{CDI}\) là góc nội tiếp chắn cung CI

Do đó: \(\widehat{ACI}=\widehat{CDI}\)

ΔOCA vuông tại C

=>\(CO^2+CA^2=OA^2\)

=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(CA=R\sqrt{3}\)

Xét ΔACI và ΔADC có

\(\widehat{ACI}=\widehat{ADC}\)

\(\widehat{CAI}\) chung

Do đó: ΔACI đồng dạng với ΔADC

=>\(\dfrac{AC}{AI}=\dfrac{AD}{AC}\)

=>\(AI\cdot AD=AC^2=\left(R\sqrt{3}\right)^2=3R^2\) không đổi

7 tháng 12 2023

B A C O D I E

Xét tg ABO và tg ACO có

AO chung 

AB=AC (gt)

OB=OC=R

=> tg ABO = tg ACO (c.c.c)

\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\Rightarrow AC\perp OC\) => AC là tiếp tuyến với (O)

b/

Xét tg vuông EOI và tg vuông COI có

OE=OC=R; OI chung => tg EOI = tg COI (hai tg vuông có 2 cạnh góc vuông bằng nhau)

Xét tg vuông EDI và tg vuông CDI có

DI chung 

tg EOI = tg COI (cmt) => IE=IC

=> tg EDI = tg CDI (hai tg vuông có 2 cạnh góc vuông bằng nhau)

Xét tg DEO và tg DCO có

DO chung

OE=OC=R

tg EDI = tg CDI (cmt) => DE=DC

=> tg DEO = tg DCO (c.c.c)

\(\Rightarrow\widehat{DEO}=\widehat{DCO}=90^o\Rightarrow DE\perp OE\) => DE là tiếp tuyến với (O, R)

 

 

28 tháng 12 2021

28 tháng 12 2021

?

20 tháng 10 2021

sao ko ai giúp vậy hả tr

 

20 tháng 10 2021

b: Xét ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC

nên \(AH^2=AC\cdot AK\)

\(\Leftrightarrow\dfrac{AC}{2}=\dfrac{AH^2}{2\cdot AK}\)

hay \(HI=\dfrac{AH^2}{2\cdot AK}\)

Bài 2:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-2m-n+1=3\\4m-n+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m+n=-2\\4m-n=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6m=-4\\4m-n=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{2}{3}\\n=4m+2=-\dfrac{8}{3}+2=-\dfrac{2}{3}\end{matrix}\right.\)

Hướng dẫn:

Ta có:

\(x^2-xy+y^2=2x-3y-2\)

\(\Leftrightarrow2x^2-2xy+2y^2-4x+6y+4+9=9\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=9\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y+3\right)^2=9\)

Xét....

Đây là 1 cách nhưng làm hơi dài.

 

27 tháng 2 2022

\(x^2-xy+y^2=2x-3y-2\\ \Leftrightarrow x^2-xy+y^2-2x+3y+2=0\left(1\right)\\ \Leftrightarrow x^2-x\left(y+2\right)+y^2+3y+2=0\)

Coi đây là pt bậc 2 ẩn x

Ta có: \(\Delta=\left[-\left(y+2\right)\right]^2-4\left(y^2+3y+2\right)=y^2+4y+4-4y^2-12y-8=-3y^2-8y-4\)

Để pt có nghiệm nguyên thì \(\Delta\ge0\Leftrightarrow-3y^2-8y-4\ge0\Leftrightarrow-2\le y\le-\dfrac{2}{3}\)

\(\Leftrightarrow y\in\left\{-2;-1\right\}\)

Thay y=-2 vào (1) ta có:

\(\left(1\right)\Leftrightarrow x^2-x.\left(-2\right)+\left(-2\right)^2-2x+3.\left(-2\right)+2=0\\ \Leftrightarrow x^2+2x+4-2x-6+2=0\\ \Leftrightarrow x^2=0\Leftrightarrow x=0\)

Thay y=-1 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-x.\left(-1\right)+\left(-1\right)^2-2x+3.\left(-1\right)+2=0\\ \Leftrightarrow x^2+x+1-2x-3+2=0\\ \Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(0;-1\right);\left(1;-1\right)\right\}\)