Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ảnh ảo, ngược chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{25}=\dfrac{1}{d'}-\dfrac{1}{15}\)
\(\Rightarrow d'=9,375cm\)
Độ cao ảnh A'B':
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{40}{h'}=\dfrac{15}{9,375}\Rightarrow h'=25cm\)
a)
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Leftrightarrow\dfrac{d'}{h'}=\dfrac{20}{2}\Rightarrow d'=10h'\)
Áp dụng công thức thấu kính ta được:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\left(1\right)\)
Thay \(d'=10h'\) vào công thức trên ta có:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{10h'}\) hay \(\dfrac{1}{12}=\dfrac{1}{20}+\dfrac{1}{10h'}\Rightarrow h'=3\left(cm\right)\)
Vậy chiều cao của ảnh là 3cm
Khoảng cách từ màn đến thấu kính:
Ta có: \(d'=10h'=10.3=30cm\)
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{8}\)
\(\Rightarrow d'=4,8cm\)
Độ cao ảnh A'B':
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{8}{4,8}\Rightarrow h'=1,2cm\)