K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2

Nếu a,b ko cùng tính chẵn lẻ thì 

ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2

Nếu a,b lẻ thì (a+b) chia hết cho 2

=>ab(a+b) chia hết cho 2

b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

22 tháng 12 2018

a) Xét 4 trường hợp :

TH1: a lẻ - b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH2: a chẵn - b lẻ

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH3: a chẵn - b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH4: a lẻ - b lẻ

=> a + b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

Vậy ta có đpcm

22 tháng 12 2018

b) \(ab-ba=10a+b-10b-a\)

\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)

Ta có : abcdeg = ab.10000 + cd.100 + eg 

                         = ab.9999 + cd.99 + (ab + cd + eg)

                         = 99(ab.101 + cd) + (ab + cd + eg)

Vì 99(ab.101 + cd) chia hết cho 11 và  (ab + cd + eg) chia hết cho 11

Vậy abcdeg chia hết cho 11

3 tháng 4 2018

a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg 

                             = ab . 9999 + ab + cd . 99 + cd + eg

                             = ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg

                              = (ab . 909 + cd . 9) . 11 + (ab + cd + eg)

  Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11

20 tháng 12 2017

b, 1028+8 chia hết cho 9

1028+8=(1027*10)+8=10009+8 chia hết cho 8

(8,9)=1 nên 1028+8 chia hết cho 27

10 tháng 12 2017

1)

Ta có : \(6a+9b=3.\left(2a+3b\right)\)(đặt 3 làm thừa số chung )

Vì \(3⋮3\)

\(\Leftrightarrow3.\left(2a+3b\right)⋮3\left(đpcm\right)\)

2)

Ta có : \(2a+4b=2a+2b+2b⋮3\)

            \(4a+2b=2a+2a+2b\)

Vì \(\hept{\begin{cases}2a⋮3\\2b⋮3\end{cases}}\Rightarrow2a+2a+2b⋮3\Leftrightarrow\left(4a+2b\right)⋮3\)

3)

Ta có : \(\overline{aaa}=a.111=a.3.37\)

Vì 37 chia hết cho 37

<=> a.3.37 chia hết cho 37

<=> \(\overline{aaa}⋮37\)

1 tháng 1 2016

a là số liền sau của b<=>a=b+1

=>a+b=b+1+b=2b+1(1)

 a^2-b^2=(b+1)^2-b^2=(b+1)(b+1)-b^2

=b(b+1)+1(b+1)-b^2=b^2+b+b+1-b^2=2b+1(2)

 Từ (1) và (2)=>đpcm

27 tháng 6 2018

1.

(a - b) - (b + c) + (c - a) - (a - b - c)

= a - b - b - c + c - a - a + b + c

= (a - a) + (b - b) + (c - c) - (a + b - c)

=0 + 0 + 0 - (a + b - c)

= - (a + b - c)    (đpcm)

2. chju

27 tháng 6 2018

P = a . ( b - a ) - b . ( a - c ) - bc

P = ab - a- ba + bc - bc

P = ab - a2 - ba

P = a . ( b - a - b )

P = a . ( - a ) mà a khác 0 => P có giá trị âm

Vậy biểu thức P luôn âm với a khác 0

1.Tính giá trị các biểu thức sau a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\) b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\) 2.Tìm x biết \(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\) 3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13 b, Cho M = b -...
Đọc tiếp

1.Tính giá trị các biểu thức sau

a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\)

b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)

2.Tìm x biết

\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)

3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13

b, Cho M = b - \(\dfrac{2017}{2018}\left(-a+b\right)-\left(\dfrac{1}{2018}b+\dfrac{2015}{2017}c-a\right)-\left(\dfrac{2}{201}c+a\right)+c\)

Trong đó b, c ∈ Z và a là số nguyên âm. Chứng minh rằng M luôn có giá trị dương

4. a, Tìm tất cả các cặp số nguyên khác 0 sao cho tổng của chúng bằng tổng các nghịch đảo của chúng

b, Tìm số nguyên tố \(\overline{ab}\) (a > b > 0) sao cho \(\overline{ab}-\overline{ba}\) là số chính phương

5. Tìm các số tự nhiên a và b thỏa mãn \(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)

1

Câu 2: 

\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)

\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)

=>x=11

8 tháng 8 2018

Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)

                             \(=11\left(a+b\right)\)

và 33 = 11 .

mà \(a+b\)không chia hết cho 3

Nên (\(\left(\overline{ab}+\overline{ba};33\right)=11\)

29 tháng 12 2018

 = 11

ti-ck cho ntn này

nhé