Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp mk vs mn ơi. Mk cx chưa cần vội lm trước 22h nha. Yêu mn nhiều lm
1) Với x > 0 ta có:
\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.
1: Áp dụng Bđt cosi, ta được:
\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)
a) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (ĐKXĐ: \(x\ne-1;y\ne-4\))
Đặt \(\dfrac{x}{x+1}=a;\dfrac{1}{y+4}=b\left(a\ne0;b\ne0\right)\)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}3a-2b=4\left(1\right)\\2a-5b=9\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow2a=9+5b\Leftrightarrow a=\dfrac{9+5b}{2}\)
Thay \(a=\dfrac{9+5b}{2}\) vào \(\left(1\right)\), ta có:
\(\dfrac{3\left(9+5b\right)}{2}-2b=4\)
\(\Leftrightarrow27+15b-4b=8\)
\(\Leftrightarrow11b=-19\Leftrightarrow b=\dfrac{-19}{11}\)
Thay \(b=\dfrac{-19}{11}\) vào \(\left(2\right)\), ta có:
\(2a-5\cdot\dfrac{-19}{11}=9\)
\(\Leftrightarrow a=\dfrac{2}{11}\)
Với \(a=\dfrac{2}{11}\Rightarrow\dfrac{x}{x+1}=\dfrac{2}{11}\)
\(\Leftrightarrow11x=2x+2\Leftrightarrow x=\dfrac{2}{9}\)
Với \(b=\dfrac{-19}{11}\Rightarrow\dfrac{1}{y+4}=\dfrac{-19}{11}\)
\(\Leftrightarrow-19y-76=11\)
\(\Leftrightarrow y=\dfrac{-90}{19}\)
b,Ta có:
\(PT\Leftrightarrow7+3.\sqrt[3]{2+x}.\sqrt[3]{5-x}\left(\sqrt[3]{2+x}+\sqrt[3]{5-x}\right)=1\)
Thay \(\sqrt[3]{2+x}+\sqrt[3]{5-x}=1\) vào PT
\(\Rightarrow\) \(3.\sqrt[3]{2+x}.\sqrt[3]{5-x}=-6\)
\(\Leftrightarrow\sqrt[3]{2+x}.\sqrt[3]{5-x}=-2\)
\(\Leftrightarrow\left(2+x\right)\left(5-x\right)=-8\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
Thử lại thấy x= - 3, x=6 thỏa mãn
Vậy x= -3, x = 6
Ta chứng minh với a,b > 0 thì : \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow2ab\left(a^4+b^4\right)\ge ab\left(a+b\right)\left(a^3+b^3\right)\)\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow a^4+b^4\ge ab^3+ba^3\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )
Gọi biểu thức là A
Ta có : \(A\ge\frac{1}{2}.\left(2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=1\)
Có thể xem thêm cách khác trong câu hỏi tương tự
Dễ dàng CM đc: \(\left(a^3+b^3\right)^2\le\left(a^4+b^4\right)\left(a^2+b^2\right)\)
Andddd \(ab+bc+ca=abc\)\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\Sigma\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\Sigma\frac{\frac{\left(a^3+b^3\right)^2}{a^2+b^2}}{ab\left(a^3+b^3\right)}=\Sigma\frac{a^3+b^3}{ab\left(a^2+b^2\right)}\ge\Sigma\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab\left(a^2+b^2\right)}=\Sigma\frac{a^2+b^2}{ab\left(a+b\right)}\)
\(\ge\Sigma\frac{\frac{\left(a+b\right)^2}{2}}{ab\left(a+b\right)}=\Sigma\frac{a+b}{2ab}=\frac{1}{2}\Sigma\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Dấu "=" xảy ra khi a=b=c=3
a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)
hay \(\left(a-1\right)^2>=0\)(luôn đúng)
b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)