0" là            A. Với mọi số thực x, x² ≤ 0                    ..."> 0" là            A. Với mọi số thực x, x² ≤ 0                    ..."> 0" là            A. Với mọi số thực x, x² ≤ 0                    ..." />
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x  = 1\) không là số vô tỉ.

(2) “Bình phương của mọi số thực đều không âm” đúng;

(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;

(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.

NV
21 tháng 3 2022

3 là mệnh đề đúng, do khi \(\Delta< 0\) thì \(a.f\left(x\right)>0\) ; \(\forall a\ne0\) 

29 tháng 8 2019

Mọi người chứng minh ra giúp mình với ạ

9 tháng 8 2019

Đáp án A

16 tháng 5 2017

a) \(\forall x\in\mathbb{R}:x+\left(-x\right)=0\) (đúng)

Phủ định là \(\exists x\in\mathbb{R}:x+\left(-x\right)\ne0\) (sai)

b) \(\forall x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}=1\) (đúng

Phủ định là \(\exists x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}\ne1\) (sai)

c) \(\exists x\in R:x=-x\) (đúng)

Phủ định là \(\forall x\in\mathbb{R}:x\ne-x\) (sai)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).

Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.

Mệnh đề R đúng vì \(x =  - 1 + \sqrt 2  \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)

b) Có thể viết lại các mệnh đề trên như sau:

P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”

Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”

R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”

24 tháng 2 2017

Đáp án B

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Mệnh đề P đúng, bình phương của một số thực luôn lớn hơn hoặc bằng 0 (không âm).

Mệnh đề Q sai vì \({x^2} = 2 \Leftrightarrow x =  \pm \sqrt 2  \notin \mathbb Q\), do đó không có số hữu tỉ nào mà bình phương của nó bằng 2.

3 tháng 5 2019

∀ x   ∈   R :   x   +   ( - x )   =   0   (đúng)

    Phủ định là ∃   x   ∈   R :   x   +   ( - x ) ≠   0 (sai)