K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2023

Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)

Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).

 Dễ thấy chữ số tận cùng của N là 6.

 Ta tính thử một vài giá trị của \(16^n\):

 \(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\)\(16^6=16777216\);...

 Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k.    (1)

 Chứng minh: (1) đúng với \(k=0\).

 Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5. 

 Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.

 Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:

\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)

 Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\).  (2)

 Chứng minh: (2) đúng với \(u=0\) 

 Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:

 \(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\) 

\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.

 Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.

 Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.

 Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)

 

 

2 tháng 1 2016

số 97/197 không là số thập phân vô hạn tuần hoàn

2 tháng 1 2016

Nguyễn Nhật Minh bấm mấy tính ko ra là phải

6 tháng 3 2017