Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là
\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)
b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:
2 5 6 7 8 9 10 11 12 14 16
+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)
Sắp xếp theo thứ tự không giảm.
2,593 2,977 3,155 3,270 3,387 3,412 3,813 3,920 4,042 4,236
Khoảng biến thiên \(R = 4,236 - 2,593 = 1,643\)
Vì n=10 nên ta có:
\({Q_1} = 3,155\); \({Q_3} = 3,920\)
Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1} = 3,920 - 3,155\)\( = 0,765\)
\(\overline x \approx 3,481\)
Ta có:
Độ lệch chuẩn: \(s = \sqrt {0,2396} \approx 0,489\)Phương sai là: \({s_2} = \frac{{2,396}}{{10}} = 0,2396\)
Ta có n=2+4+6+12+8+3=35, lẻ.
Trung vị là học sinh thứ 18
Ta thấy 2+4+6<18<2+4+6+12
=> \({Q_2} = 3\)
Ta tìm \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\)(không bao gồm \({Q_2}\))
Nửa số liệu bên trái \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9:
Ta thấy 2+4<9<2+4+6
=>\({Q_1} = 2\)
Ta tìm \({Q_3}\) là trung vị của nửa số liệu bên phải \({Q_2}\)(không bao gồm \({Q_2}\))
Nửa số liệu bên phải \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9 trong 17 học sinh và là học sinh thứ 9+18=27 trong 35 học sinh.
Ta thấy 2+4+6+12<27<2+4+6+12+8
=>\({Q_3} = 4\)
Tham khảo:
n=10
Giả sử sau khi sắp xếp 10 số dương theo thứ tự không giảm thì được:
=> Trung vị là giá trị trung bình của số thứ 5 và thứ 6.
=> \({Q_1}\) là số thứ 3 và \({Q_3}\) là số thứ 8.
a) Khi nhân mỗi giá trị của mẫu số liệu với 2 thì:
+ Số lớn nhất tăng 2 lần và số nhỏ nhất tăng 2 lần
=> R tăng 2 lần
+ \({Q_1}\) và \({Q_3}\) tăng 2 lần
=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) tăng 2 lần.
+ Giá trị trung bình tăng 2 lần
=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) cũng tăng 2 lần
=> \({\left( {{x_i} - \overline x} \right)^2}\) tăng 4 lần
=> Phương sai tăng 4 lần
=> Độ lệch chuẩn tăng 2 lần.
Vậy R tăng 2 lần, khoảng tứ phân vị tăng 2 lần và độ lệch chuẩn tăng 2 lần.
b) Cộng mỗi giá trị của mẫu số liệu với 2 thì
+ Số lớn nhất tăng 2 đơn vị và số nhỏ nhất tăng 2 đơn vị
=> R không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
+ \({Q_1}\) và \({Q_3}\) tăng 2 đơn vị
=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
+ Giá trị trung bình tăng 2 đơn vị
=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
=> \({\left( {{x_i} - \overline x} \right)^2}\) không đổi
=> Phương sai không đổi.
=> Độ lệch chuẩn không đổi.
Vậy khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn đều không đổi.
Xét mẫu số liệu đã sắp xếp là:
\(3;{\rm{ }}3;{\rm{ }}9;{\rm{ }}9;{\rm{ }}10;{\rm{ }}10;{\rm{ }}12;{\rm{ }}12;\;\;37.\)
Cỡ mẫu là \(n = 9\) là số lẻ nên giá trị tứ phân vị thứ hai là: \({Q_2} = 10.\)
Tứ phân vị thứ nhất là trung vị của mẫu: \(3;{\rm{ }}3;{\rm{ }}9;{\rm{ }}9.\). Do đó \({Q_1} = 6.\)
Tứ phân vị thứ ba là trung vị của mẫu: \(10;{\rm{ }}12;{\rm{ }}12;\;\;37.\). Do đó \({Q_3} = 12\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 12 - 6 = 6\)
Giá trị ngoại lệ x thỏa mãn \(x > 12 + 1,5.6 = 21\) hoặc \(x < 6 - 1,5.6 = - 3\).
Vậy giá trị ngoại lệ của mẫu số liệu đó là \(37\)
a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
2; 2; 5; 7; 10; 10; 13; 15; 19
+) Vì cỡ mẫu là \(n = 9\), là số lẻ, nên giá trị tứ phân vị thứ hai là \({Q_2} = 10\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.
Do đó \({Q_1} = \frac{1}{2}(2 + 5) = 3,5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.
Do đó \({Q_3} = \frac{1}{2}(13 + 15) = 14\)
b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
1; 2; 5; 5; 9; 10; 10; 15; 15; 19
+) Vì cỡ mẫu là \(n = 10\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}(9 + 10) = 9,5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.
Do đó \({Q_1} = 5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.
Do đó \({Q_3} = 15\)
Ta có: 9 là một số lẻ nên số trung vị cùa mẫu số liệu trên là số ở vị trí chính giữa
Do đó; số trung vị của mẫu số liệu là: Me= 7
Chọn C
Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:
160 | 162 | 164 | 165 | 172 | 174 | 177 | 178 | 180 |
a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
160 162 164 165 172 174 177 178 180
Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)
Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)
Tứ phân vị của mẫu số liệu trên là:
- Trung vị của dãy 160 162 164 165 là: \({Q_1} = 163\)
- Trung vị của dãy 174 177 178 180 là: \({Q_3} = 177,5\)
- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)
b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)
Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)
c) Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)
Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} \approx 7,13\)
*) Sắp xếp thứ tự của mẫu số liệu theo thứ tự không giảm ta được: 1 2 4 5 9 10 11
a) Số trung bình cộng của mẫu số liệu trên là: \(\overline x = \frac{{1{\rm{ + }}2{\rm{ + }}4{\rm{ + }}5{\rm{ + }}9{\rm{ + }}10{\rm{ + }}11}}{7} = 6\)
b) Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 7 số liệu ( lẻ ) nên trung vị \({Q_2} = 5\)
c) Tứ phân vị của mẫu số liệu trên là:
Trung vị của dãy 1, 2, 4 là: \({Q_1} = 2\)
Trung vị của dãy 9, 10, 11 là: \({Q_3} = 10\)
Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 2\), \({Q_2} = 5\), \({Q_3} = 10\)
d) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 11 - 1 = 10\)
e) Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 10 - 2 = 8\)
g) Phương sai của mẫu số liệu trên là: \({s^2} = \frac{{\left[ {{{\left( {1 - \overline x } \right)}^2} + {{\left( {2 - \overline x } \right)}^2} + ... + {{\left( {11 - \overline x } \right)}^2}} \right]}}{7} = \frac{{96}}{7}\)
h) Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} = \sqrt {\frac{{96}}{7}} \)
Sắp xếp lại:
7 9 9 10 10 10 11 12 12 14
Trung vị \({Q_2} = \dfrac{{10 + 10}}{2} = 10\)
Nửa trái \({Q_2}\): 7 9 9 10 10
\({Q_1} = 9\)
Nửa phải: 10 11 12 12 14
\({Q_3} = 12\)
Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1} = 12 - 9 = 3\)