K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:

2; 2; 5; 7; 10; 10; 13; 15; 19

+) Vì cỡ mẫu là \(n = 9\), là số lẻ, nên giá trị tứ phân vị thứ hai là \({Q_2} = 10\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.

Do đó \({Q_1} = \frac{1}{2}(2 + 5) = 3,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.

Do đó \({Q_3} = \frac{1}{2}(13 + 15) = 14\)

b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:

1; 2; 5; 5; 9; 10; 10; 15; 15; 19

+) Vì cỡ mẫu là \(n = 10\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}(9 + 10) = 9,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.

Do đó \({Q_1} = 5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.

Do đó \({Q_3} = 15\)

12 tháng 7 2019

Trong dãy số liệu thống kê trên có 20 giá trị ( không phân biệt)  nên có tất cả 20 vận động viên tham gia chạy.

Vậy kích thước mẫu là 20

Chọn B.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là

\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)

b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:

2 5 6 7 8 9 10 11 12 14 16

+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Sắp xếp lại:

7  9  9  10  10  10  11  12  12  14

Trung vị \({Q_2} = \dfrac{{10 + 10}}{2} = 10\)

Nửa trái \({Q_2}\): 7  9  9  10  10 

\({Q_1} = 9\)

Nửa phải: 10  11  12  12  14

\({Q_3} = 12\)

Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1} = 12 - 9 = 3\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

+) Số trung bình \(\overline x  = \frac{{6 + 8 + 3 + 4 + 5 + 6 + 7 + 2 + 4}}{9} = 5\)

+) phương sai hoặc \({S^2} = \frac{1}{9}\left( {{6^2} + {8^2} + ... + {4^2}} \right) - {5^2} = \frac{{10}}{3}\)

  => Độ lệch chuẩn \(S = \sqrt {\frac{{10}}{3}}  \approx 1,8\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 2; 3; 4; 4; 5; 6; 6; 7; 8.

+) Khoảng biến thiên: \(R = 8 - 2 = 6\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 5\)

\({Q_1}\) là trung vị của nửa số liệu 2; 3; 4; 4. Do đó \({Q_1} = 3,5\)

\({Q_3}\) là trung vị của nửa số liệu: 6; 6; 7; 8. Do đó \({Q_3} = 6,5\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 6,5 - 3,5 = 3\)

+) x là giá trị ngoại lệ trong mẫu nếu \(x > 6,5 + 1,5.3 = 11\) hoặc \(x < 3,5 - 1,5.3 =  - 1\)

Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.

b)

+) Số trung bình \(\overline x  = \frac{{13 + 37 + 64 + 12 + 26 + 43 + 29 + 23}}{8} = 30,875\)

+) phương sai hoặc \({S^2} = \frac{1}{8}\left( {{{13}^2} + {{37}^2} + ... + {{23}^2}} \right) - 30,{875^2} \approx 255,8\)

  => Độ lệch chuẩn \(S \approx 16\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 12; 13; 23; 26; 29; 37; 43; 64.

+) Khoảng biến thiên: \(R = 64 - 12 = 52\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 27,5\)

\({Q_1}\) là trung vị của nửa số liệu 12; 13; 23; 26. Do đó \({Q_1} = 18\)

\({Q_3}\) là trung vị của nửa số liệu: 29; 37; 43; 64. Do đó \({Q_3} = 40\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 40 - 18 = 22\)

+) x là giá trị ngoại lệ trong mẫu nếu \(x > 40 + 1,5.22 = 73\) hoặc \(x < 18 - 1,5.22 =  - 15\)

Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.

Cho mẫu số liệu: 1 2 4 5 9 10 11a) Số trung bình cộng của mẫu số liệu trên là:A. 5.                     B. 5,5.                C.6.                   D. 6,5.b) Trung vị của mẫu số liệu trên là:A. 5.                     B. 5,5.                C. 6.                  D. 6,5.c) Tứ phân vị của mẫu số liệu trên là:A.\({Q_1}{\rm{ }} = {\rm{ }}4,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}9\) .B.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{...
Đọc tiếp

Cho mẫu số liệu: 1 2 4 5 9 10 11

a) Số trung bình cộng của mẫu số liệu trên là:

A. 5.                     B. 5,5.                C.6.                   D. 6,5.

b) Trung vị của mẫu số liệu trên là:

A. 5.                     B. 5,5.                C. 6.                  D. 6,5.

c) Tứ phân vị của mẫu số liệu trên là:

A.\({Q_1}{\rm{ }} = {\rm{ }}4,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}9\) .

B.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}11\) .

C.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}11\) .

D.\({Q_1}{\rm{ }} = {\rm{ }}2,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{Q_3} = {\rm{ }}10\) .

d) Khoảng biến thiên của mẫu số liệu trên là:

A. 5.                     B. 6.                   C. 10.                D. 11.

e) Khoảng tứ phân vị của mẫu số liệu trên là:

A. 7.                     B. 8.                   C. 9.                  D. 10.

g) Phương sai của mẫu số liệu trên là:

A.\(\sqrt {\frac{{96}}{7}} \)          B.\(\frac{{96}}{7}\)    C. 96.  D.\(\sqrt {96} \) .

h) Độ lệch chuẩn của mẫu số liệu trên là:

A.\(\sqrt {\frac{{96}}{7}} \)          B.\(\frac{{96}}{7}\)    C. 96.  D.\(\sqrt {96} \) .

1
HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

*) Sắp xếp thứ tự của mẫu số liệu theo thứ tự không giảm ta được: 1 2 4 5 9 10 11

a) Số trung bình cộng của mẫu số liệu trên là: \(\overline x  = \frac{{1{\rm{  +  }}2{\rm{  +  }}4{\rm{  +  }}5{\rm{  +  }}9{\rm{  +  }}10{\rm{  + }}11}}{7} = 6\)

b) Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 7 số liệu ( lẻ ) nên trung vị \({Q_2} = 5\)

c) Tứ phân vị của mẫu số liệu trên là:

 Trung vị của dãy 1, 2, 4 là: \({Q_1} = 2\)

Trung vị của dãy  9, 10, 11 là: \({Q_3} = 10\)

Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 2\), \({Q_2} = 5\), \({Q_3} = 10\)

d) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 11 - 1 = 10\)

e) Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 10 - 2 = 8\)

g) Phương sai của mẫu số liệu trên là: \({s^2} = \frac{{\left[ {{{\left( {1 - \overline x } \right)}^2} + {{\left( {2 - \overline x } \right)}^2} + ... + {{\left( {11 - \overline x } \right)}^2}} \right]}}{7} = \frac{{96}}{7}\)

h) Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  = \sqrt {\frac{{96}}{7}} \)

27 tháng 3 2017

Đáp án D.

+ Điểm trung bình của 100 học sinh là: x = 15 , 09  

+ Độ lệch chuẩn:

S = 1 100 2 . 9 - 15 , 09 2 + 1 . 10 - 15 , 09 2 + . . . + 3 . 19 - 15 , 09 2  

S ≈ 2 , 17  

Chú ý: Cách sử dụng máy tính bỏ túi

Bước 1: Vào chế độ thống kê:

Bước 2: Hiển thị cột tần số:

Bước 3: Nhập các giá trị: nhập lần lượt từng giá trị, nhập xong mỗi giá trị ấn phím  để lưu vào máy.

 

Bước 4: Nhập tần số: Sau khi nhập đủ các giá trị, dùng phím  để di chuyển con trỏ trở về đầu cột tần số.

 

Nhập lần lượt tần số tương ứng với mỗi giá trị.

Kết thúc ấn phím  để thoát khỏi màn hình thống kê hai cột.

 

Bước 5: * Tính giá trị trung bình:

* Tính độ lệch chuẩn s:

(Tính phương sai s2 ta ấn tiếp phím )

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Mẫu số liệu trên được xếp có 11 số liệu nên \({M_e} = 6\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

+) Số trung bình \(\overline x  = \frac{{ - 2.10 + ( - 1).10 + 0.30 + 1.20 + 2.10}}{{10 + 20 + 30 + 20 + 10}} = 0\)

+) phương sai hoặc \({S^2} = \frac{1}{90}\left( {10.{{( - 2)}^2} + 10.{{( - 1)}^2} + ... + {{10.2}^2}} \right) - {0^2} = 4 \over 3\)

  => Độ lệch chuẩn \(S \approx 1,155\)

+) Khoảng biến thiên: \(R = 2 - ( - 2) = 4\)

Tứ phân vị: \({Q_2} = 0;{Q_1} =  - 1;{Q_3} = 1\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 1 - ( - 1) = 2\)

b) Giả sử cỡ mẫu \(n = 10\). Khi đó mẫu số liệu trở thành:

Giá trị

0

1

2

3

4

Tần số

1

2

4

2

1

+) Số trung bình \(\overline x  = \frac{{0.0,1 + 1.0,2 + 2.0,4 + 3.0,2 + 4.0,1}}{{0,1 + 0,2 + 0,4 + 0,2 + 0,1}} = 2\)

+) phương sai hoặc \({S^2} = \frac{1}{1}\left( {0,{{1.0}^2} + 0,{{2.1}^2} + ... + 0,{{1.4}^2}} \right) - {2^2} = 1,2\)

  => Độ lệch chuẩn \(S \approx 1,1\)

+) Khoảng biến thiên: \(R = 4 - 0 = 4\)

Tứ phân vị: \({Q_2} = 2;{Q_1} = 1;{Q_3} = 3\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 3 - 1 = 2\)

2 tháng 1 2020

Ta có: 9 là một số lẻ nên số trung vị cùa mẫu số liệu trên là số ở vị trí  chính giữa

Do đó; số trung vị  của mẫu số liệu là: Me= 7

 Chọn C