K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2023

a, Để \(m\) là phân số 

\(2+n\ne0\\ \Rightarrow n\ne-2\)

\(b,\) 

\(\cdot,n=1\\ \Rightarrow m=\dfrac{1-1}{2+1}=\dfrac{0}{3}=0\\ \cdot,n=3\\ \Rightarrow m=\dfrac{1-3}{2+3}=-\dfrac{2}{5}\\ \cdot,n=12\\ \Rightarrow m=\dfrac{1-12}{2+12}=-\dfrac{11}{14}\)

a: ĐKXĐ: n+2<>0

=>n<>-2

b: Sửa đề: m+n=1

m+n=1 thì 1-n=(1-n)/(2+n)

=>(1-n)(2+n)=(1-n)

=>(1-n)(1+n)=0

=>n=1 hoặc n=-1

=>m=0 hoặc m=2

=>m=0 hoặc m=2/1

n=3 thì \(m=\dfrac{1-3}{2+3}=\dfrac{-2}{5}\)

n=12 thì \(m=\dfrac{1-12}{12+2}=\dfrac{-11}{14}\)

29 tháng 8 2019

Bài 1 :

\(-8=\frac{-8}{1}=\frac{-16}{2}=\frac{-24}{3}=\frac{-32}{4}=\frac{-40}{5}\)

\(-2=\frac{-2}{1}=\frac{-4}{2}=\frac{-6}{3}=\frac{-8}{4}=\frac{-10}{5}\)

\(3=\frac{3}{1}=\frac{6}{2}=\frac{9}{3}=\frac{12}{4}=\frac{15}{5}\)

  

29 tháng 8 2019

Bài 2 :

 a)  Để A là phân số thì :

  \(n-6\ne0\Rightarrow n\ne6\)

b)\(A=\frac{4}{0-6}=\frac{4}{-6}\)

\(A=\frac{4}{7-6}=4\)

\(A=\frac{4}{-12-6}=\frac{-2}{9}\)

Bài 3 : [ Tương tự bài 2 ]

Bài 4 : [ Suy nghĩ thì ra ]

               [ Hoq chắc - có gì sai thông cảm ]

Bài 2: 

a: Để A là phân số thì n-1<>0

hay n<>1

b: Để A là số nguyên thì \(n-1\in\left\{1;-1\right\}\)

hay \(n\in\left\{2;0\right\}\)

13 tháng 3 2022

\(M=\frac{n+4}{n+1}\)

a)\(ĐK:n\ne-1\)

b)\(n=0\)

Thay n=0 vào M ta được:

\(M=\frac{0+4}{0+1}=4\)

   \(n=3\)

Thay n=3 vào M ta được:

\(M=\frac{3+4}{3+1}=\frac{7}{4}\)

   \(n=-7\)

Thay n=-7 vào M ta được:

\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)

c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)

Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên 

Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên

Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(3\right)\)

\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)

Vậy....

13 tháng 3 2022

a, đk x khác -1 

b, Với n = 0 => 0+4/0+1 = 4 

Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)

Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)

c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n+11-13-3
n0-22-4

 

8 tháng 5 2020

a) \(A=\frac{3n+11}{n-2}\left(n\inℤ\right)\)

Để A là phân số thì n-2\(\ne\)0

<=> n\(\ne\)2

Vậy n\(\ne\)2 thì A là phân số

b) \(A=\frac{3n+11}{n-2}\left(n\ne2\right)\)

Để A có giá trị nguyên thì \(\frac{3n+11}{n-2}\)đạt giá trị nguyên

=> 3n+11\(⋮\)n-2

Ta có 3n+11=3(n-2)+17

Thấy n-2\(⋮n-2\Rightarrow3\left(n-2\right)⋮7\)

Vậy để 3(n-2)+17 \(⋮n-2\Rightarrow17⋮n-2\)

Có \(n\inℤ\Rightarrow n-2\inℤ\Rightarrow n-2\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

Ta có bảng

n-2-17-1117
n-151319

Đối chiếu điều kiện ta được n={-15;1;3;19}

Vậy n={-15;1;3;19} thì A đạt giá trị nguyên

\(a,\) \(M\) là phân số khi \(M\) \(\ne0\) \(\Rightarrow\dfrac{-3}{n-1}\ne0\Leftrightarrow n-1\ne0\Leftrightarrow n\ne1\)

\(b,\) Thay \(n=3,n=5,n=-4\) Vào \(M\) ta có :

\(M=\dfrac{-3}{3-1}=\dfrac{-3}{2}\)

\(M=\dfrac{-3}{5-1}=\dfrac{-3}{4}\)

\(M=\dfrac{-3}{-4-1}=\dfrac{3}{5}\)

a) Để M là phân số thì \(n-1\ne0\)

hay \(n\ne1\)

28 tháng 2 2018

\(M=\frac{3}{n-2}\)

a, \(ĐK:x-2\ne0\Leftrightarrow n\ne2\)

b, \(M=\frac{3}{n-2}\) ; n = 0

\(\Rightarrow M=\frac{3}{0-2}\)

\(\Rightarrow M=\frac{3}{-2}\)

với -2 làm tương tự với 0