Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Chọn C
Bài 4:
a: \(\widehat{C}=180^0-80^0-50^0=50^0\)
Xét ΔABC có \(\widehat{A}=\widehat{C}< \widehat{B}\)
nên BC=AB<AC
b: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
Bài 1: - \(\dfrac{5}{7}\) x \(\dfrac{31}{33}\) + \(\dfrac{-5}{7}\) x \(\dfrac{2}{33}\) + 2\(\dfrac{5}{7}\)
= - \(\dfrac{5}{7}\) \(\times\) ( \(\dfrac{31}{33}\) + \(\dfrac{2}{33}\)) + 2 + \(\dfrac{5}{7}\)
= - \(\dfrac{5}{7}\) + 2 + \(\dfrac{5}{7}\)
= 2
2, \(\dfrac{3}{14}\): \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\): \(\dfrac{1}{28}\) - 8
= (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) : \(\dfrac{1}{28}\) - 8
= \(\dfrac{2}{7}\) x 28 - 8
= 8 - 8
= 0
Bài 1:
b: Ta có: \(18^n:2^n=\left(\sqrt{81}\right)^2\)
\(\Leftrightarrow9^n=81\)
hay n=2
Bài 3:
1, Áp dụng t/c dtsbn:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{z-x}{3-6}=\dfrac{-21}{-3}=7\\ \Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=21\end{matrix}\right.\)
2, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}=\dfrac{130}{\dfrac{13}{12}}=120\)
Do đó: x=60; y=40; z=30
Câu 9:
d) Xét ΔABC có
AH là đường trung tuyến ứng với cạnh BC
BD là đường trung tuyến ứng với cạnh AC
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC(đpcm)