K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{6x^2}{\sqrt[3]{\left(6x^2-8x^3\right)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}=\dfrac{3}{2}\)

5 tháng 3 2021

Kết quả bằnt 1/2 í bạn 🥺

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

** Lần sau bạn chú ý viết đề bằng công thức toán để được hỗ trợ tốt hơn!

(biểu tượng $\sum$ ở góc màn hình bên trái)

Lời giải:\(\lim\limits_{x\to -\infty}(\sqrt[3]{6x^2-8x^3}+2x)=\lim\limits_{x\to -\infty}\frac{6x^2-8x^3+8x^3}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6x^2}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6}{\sqrt[3]{\frac{36}{x^2}-\frac{96}{x}+64}-2\sqrt[3]{\frac{6}{x}-8}+4}\)

\(=\frac{6}{\sqrt[3]{64}-2\sqrt[3]{-8}+4}=\frac{1}{2}\)

 

 

 

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

** Lần sau bạn chú ý viết đề bằng công thức toán để được hỗ trợ tốt hơn!

(biểu tượng $\sum$ ở góc màn hình bên trái)

Lời giải:\(\lim\limits_{x\to -\infty}(\sqrt[3]{6x^2-8x^3}+2x)=\lim\limits_{x\to -\infty}\frac{6x^2-8x^3+8x^3}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6x^2}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6}{\sqrt[3]{\frac{36}{x^2}-\frac{96}{x}+64}-2\sqrt[3]{\frac{6}{x}-8}+4}\)

\(=\frac{6}{\sqrt[3]{64}-2\sqrt[3]{-8}+4}=\frac{1}{2}\)

 

 

 

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

*** Mình nhớ là đã nhắc nhở bạn về việc sử dụng hộp công thức toán để viết đề dễ hiểu hơn. Lần nữa thì mình xin phép xóa bài nhé. Bạn sử dụng bộ gõ công thức toán ở biểu tượng $\sum$

Lời giải:

\(\lim\limits_{x\to +\infty}(\sqrt[3]{x^3+5x}-\sqrt{x^2-3x+6})=\lim\limits_{x\to +\infty}[(\sqrt[3]{x^3+5x}-x)-(\sqrt{x^2-3x+6}-x)]\)

\(=\lim\limits_{x\to +\infty}\left[\frac{5x}{\sqrt[3]{(x^3+5x)^2}+x\sqrt[3]{x^3+5x}+x^2}-\frac{-3x+6}{\sqrt{x^2-3x+6}+x}\right]\)

\(=\lim\limits_{x\to +\infty}[\frac{5}{\sqrt[3]{x^3+10x+\frac{25}{x}}+\sqrt[3]{x^2+5x}+x}-\frac{-3+\frac{6}{x}}{\sqrt{1-\frac{3}{x}+\frac{6}{x^2}}+1}]\)

\(=(0-\frac{-3}{2})=\frac{3}{2}\)

25 tháng 2 2022

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x}-x\right)\\ =\lim\limits_{x→-\infty}\dfrac{x^3+x-x^3}{\left(\sqrt[3]{x^3+x}\right)^2+x\sqrt[3]{x^3+x}+x^2}\\ =\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{\left(\sqrt[3]{1+\dfrac{1}{x^2}}\right)^2+\sqrt{1+\dfrac{1}{x^2}}+1}\\ =\lim\limits_{x\rightarrow-\infty}\dfrac{0}{1^2+1+1}=0\)

16 tháng 2 2022

Tham khảo:

undefined

Chúc bn học tốt

16 tháng 2 2022

u​i a lê​n gp nhanh v

DD
28 tháng 3 2021

\(lim\left(\sqrt{mx^2+nx+20}-3x\right)=lim\frac{mx^2+nx+20-9x^2}{\sqrt{mx^2+nx+20}+3x}\)

\(=lim\frac{\left(m-9\right)x^2+nx+20}{\sqrt{mx^2+nx+20}+3x}=lim\frac{\left(m-9\right)x+n+\frac{20}{x}}{\sqrt{m+\frac{n}{x}+\frac{20}{x^2}}+3}=\frac{8}{3}\)

\(\Leftrightarrow\hept{\begin{cases}m-9=0\\\frac{n}{\sqrt{m}+3}=\frac{8}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=16\end{cases}}\).

26 tháng 12 2023

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+x}+2x-1\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{\sqrt{4x^2+x}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)

\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)

26 tháng 12 2023

Cảm ơn ạ

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

a.

\(\lim\limits_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}=\lim_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{(x-1)^3(3x+1)}=\lim\limits _{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x+1}.\lim\limits_{x\to 1+}\frac{1}{(x-1)^3}\)

\(=\frac{1}{4}.(+\infty)=+\infty \)

Hoàn toàn tương tự:

\(\lim\limits_{x\to 1-}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}=-\infty \)

Do đó: \(\lim\limits_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\neq \lim\limits_{x\to 1-}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\) nên không tồn tại \(\lim\limits_{x\to 1}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\)

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

b.

\(\lim\limits_{x\to 1+}\frac{x^3-3x^2+2}{x^4-4x+3}=\lim\limits_{x\to 1+}\frac{(x-1)(x^2-2x-2)}{(x-1)^2(x^2+2x+3)}=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{(x-1)(x^2+2x+3)}\)

\(=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{x^2+2x+3}.\lim\limits_{x\to 1+}\frac{1}{x-1}=\frac{-1}{2}.(+\infty)=-\infty \)

Tương tự \(\lim\limits_{x\to 1-}\frac{x^3-3x^2+2}{x^4-4x+3}=+\infty \)

Do đó không tồn tại \(\lim\limits_{x\to 1}\frac{x^3-3x^2+2}{x^4-4x+3}\)

c.

\(\lim\limits_{x\to 1}\frac{x^3-2x-1}{x^5-2x-1}=\frac{1^3-2.1-1}{1^5-2.1-1}=1\)

d.

\(\lim\limits_{x\to -1}\frac{(x+2)^2-1}{x^2-1}=\lim\limits_{x\to -1}\frac{(x+2-1)(x+2+1)}{(x-1)(x+1)}=\lim\limits_{x\to -1}\frac{x+3}{x-1}=-1\)