Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng ( β ): x + 2y – z = 0.
Vậy hai vecto có giá song song hoặc nằm trên ( α ) là AB → = (2; 2; 1) và n β → = (1; 2; −1).
Suy ra ( α ) có vecto pháp tuyến là: n α → = (−4; 3; 2)
Vậy phương trình của ( α ) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0
Mặt phẳng ( α ) vuông góc với hai mặt phẳng ( β ) và ( γ ), do đó hai vecto có giá song song hoặc nằm trên ( α ) là: n β → = (3; −2; 2) và n γ → = (5; −4; 3).
Suy ra n α → = n β → ∧ n γ → = (2; 1; −2)
Mặt khác ( α )( α ) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là n α → . Vậy phương trình của ( α ) là: 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.
Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):
2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là: j → = (0; 1; 0) và n α → = (2; −1; 3)
Suy ra ( β ) có vecto pháp tuyến là n β → = j → ∧ n α → = (3; 0; −2)
Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: n β → = (3; 0; −2)
Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0
Chọn:
n P → = n Q → ∧ n R →
Phương trình của (P) là:
7(x – 1) + 5(y + 3) – 3(z – 2) = 0
Hay 7x + 5y – 3z + 14 = 0
Đáp án D
Gọi mặt phẳng cần tìm là (P). Khi đó (P) nhận vtpt của α và β là cặp vtcp
Chọn A.
Mặt phẳng chứa A, B và vuông góc với (β) nên (α) có một vectơ pháp tuyến là:
Chọn A.
Mặt phẳng (α) vuông góc với 2 mặt phẳng (P) và (Q) nên có một VTPT là
Phương trình mặt phẳng (α) là:
1(x - 2) + 2(y + 1) + 1.(z - 5) = 0 hay x + 2y + z – 5 = 0