Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình đường thẳng AB là y=ax+b
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left(a,b\right)\in\varnothing\)
b: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=2\end{matrix}\right.\)
vậy: y=2
=>Phương trình đường thẳng đi qua O và song song với (AB) là y=0
c: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=5\\4a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=\dfrac{17}{3}\end{matrix}\right.\)
Vậy: y=-2/3x+17/3
Do đó: Phương trình đường thẳng đi qua O và song song với AB có dạng là y=-2/3x
a: Vì (d1)//y=2x-1 nên a=2
Vậy: (d1): y=2x+b
Thay x=0 và y=0 vào (d1), ta được:
b+0=0
hay b=0
\(\overrightarrow{AB}=\left(0;2\right)\)
Vì (d)//AB nên (d) lấy vecto AB làm vecto chỉ phương
=>VTPT là (-2;0)
Phương trình (d) là:
-2(x-0)+0(y-0)=0
=>-2(x-0)=0
=>x-0=0
=>x=0