K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

Có \(a=1>0;\Delta'=4>0;x_1=-5;x_2=-1\)

Lập bảng xét dấu :

\(x\)\(-\infty\)               -5                  -1                    \(+\infty\)
\(f\left(x\right)\)              +        0        -           0         +

 

23 tháng 2 2016

Từ bảng xét dấu trên ta có 

\(T\left(f\left(x\right)=0\right)=\left\{-5;-1\right\};T\left(f\left(x\right)\ne0\right)=R\) / \(\left\{-5;-1\right\}\)

\(T\left(f\left(x\right)>0\right)=\left(-\infty;-5\right)\cup\left(-1;+\infty\right)\)

\(T\left(f\left(x\right)\ge0\right)=\left(-\infty;-5\right)\cup\left(-1;+\infty\right)\)

\(T\left(f\left(x\right)<0\right)=\left(-5;-1\right);T\left(f\left(x\right)\le0\right)=\left(-5;-1\right)\)

23 tháng 9 2023

Tham khảo:

a) \(f\left( x \right) =  - 3{x^2} + 4x - 1\)

\(a =  - 3 < 0\), \(\Delta  = {4^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = 4 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\)

Bảng xét dấu:

b) \(f\left( x \right) = {x^2} - x - 12\)

\(a = 1 > 0\), \(\Delta  = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x =  - 3,x = 4\)

Bảng xét dấu:

c) \(f\left( x \right) = 16{x^2} + 24x + 9\)

\(a = 16 > 0\), \(\Delta ' = {12^2} - 16.9 = 0\)

=> \(f\left( x \right)\) có nghiệm duy nhất \(x =  - \frac{3}{4}\)

Bảng xét dấu:

23 tháng 9 2023

Tham khảo:

Tam thức bậc hai \(f\left( x \right) =  - {x^2} - 2x + 8\) có hai nghiệm phân biệt \({x_1} =  - 4,{x_2} = 2\) và hệ số \(a =  - 1 < 0\).

Ta có bảng xét dấu \(f\left( x \right)\) như sau:

23 tháng 2 2016

Có a=1>0; \(\Delta=-3<0\)

Bảng xét dấu :

x\(-\infty\)                                                                            \(+\infty\)
\(f\left(x\right)\)                                                     +

Từ bảng xét dấu trên, ta được :

\(T\left(f\left(x\right)=0\right)=\varnothing;T\left(f\left(x\right)\ne0\right)=R;T\left(f\left(x\right)>0\right)=R;T\left(f\left(x\right)\ge0\right)=R\)

\(T\left(f\left(x\right)<0\right)=\varnothing;T\left(f\left(x\right)\le0\right)=\varnothing\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a =  - 2 < 0\), \(b = 4 =  > b' = 2\) và \(c =  - 5\)

\(\Delta ' = {2^2} - \left( { - 2} \right).\left( { - 5} \right) =  - 6 < 0\)

=>\(f\left( x \right)\) cùng dấu âm với hệ số a.

=> \(f\left( x \right) < 0\forall x \in \mathbb{R}\)

b) Ta có: \(a =  - 1,b = 6,c =  - 9 =  > b' = 3\)

\(\Delta ' = {3^2} - \left( { - 1} \right).\left( { - 9} \right) = 0\)

\(\frac{{ - b}}{{2a}} = \frac{{ - b'}}{a} = 3\)

=> \(f\left( x \right)\) cùng dấu âm với hệ số a với mọi \(x \in \mathbb{R}\backslash \left\{ 3 \right\}\)

=> \(f\left( x \right) < 0\forall x \in \mathbb{R}\backslash \left\{ 3 \right\}\)

24 tháng 2 2016

Đặt TT: = \(x^2+3x+2;MT:=-x^2+x+12\)

Lập bảng xét dấu  TT và MT trên tập xác đinh D=R/\(\left\{-3;4\right\}\)

Từ đó suy ra dấu của f(x)

x-\(\infty\)        -3             1             2              4             \(+\infty\)
TT         +            +     0       -     0       +            +
MT         -     0      +              +              +    0      -
f(x)         -     //       +     0      -     0        +     //     -

Từ bảng xét dấu ta được 

\(T\left(f\left(x\right)=0\right)=\left\{1;2\right\}\)   ; \(T\left(f\left(x\right)\ne0\right)=R\) / \(\left\{-3;1;2;4\right\}\)

\(T\left(f\left(x\right)>0\right)=\left(3;1\right)\cup\left(2;4\right)\) ; \(T\left(f\left(x\right)\ge0\right)=\left(-3;1\right)\cup\left(2;4\right)\)

\(T\left(f\left(x\right)<0\right)=\left(-\infty;-3\right)\cup\left(1;2\right)\cup\left(4;+\infty\right)\)

\(T\left(f\left(x\right)\le0\right)=\left(-\infty;-3\right)\cup\left[1;2\right]\cup\left(4;+\infty\right)\)

 

23 tháng 9 2023

Tham khảo:

a) Ta có tam thức bậc hai \(f\left( x \right) = {x^2} - x - 2\) có 2 nghiệm phân biệt \({x_1} =  - 1,{x_2} = 2\) và hệ số \(a = 1 > 0\)

Ta có bảng xét dấu f(x) như sau:

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)b) Từ bảng xét dấu ta thấy \(f\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x <  - 1\\x > 2\end{array} \right.\)

24 tháng 2 2016

Ta có \(a=-5<0;\Delta'=16>0;x_1=-\frac{3}{5};x_2=1\)

Bảng xét dấu :

\(x\)\(-\infty\)             \(-\frac{3}{5}\)                  1                   \(+\infty\)
\(f\left(x\right)\)              -           0        +                   -

Từ bảng xét, ta được :

\(T\left(f\left(x\right)=0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ne0\right)=R\)\(\left\{-\frac{3}{5};1\right\}\)

\(T\left(f\left(x\right)>0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ge0\right)=\left[-\frac{3}{5};1\right]\)

Từ : \(T\left(f\left(x\right)<0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\) ; \(T\left(f\left(x\right)\le0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 3 > 0,b =  - 4,c = 1\)

\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)

b) Ta có \(a = 9 > 0,b = 6,c = 1\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x =  - \frac{1}{3}\). Khi đó:

\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)

c) Ta có \(a = 2 > 0,b =  - 3,c = 10\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.10 =  - 71 < 0\)

\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)

d) Ta có \(a =  - 5 < 0,b = 2,c = 3\)

\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)

e) Ta có \(a =  - 4 < 0,b = 8c =  - 4\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

g) Ta có \(a =  - 3 < 0,b = 3,c =  - 1\)

\(\Delta  = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) =  - 3 < 0\)

\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)