Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Tam thức bậc hai \(f\left( x \right) = - {x^2} - 2x + 8\) có hai nghiệm phân biệt \({x_1} = - 4,{x_2} = 2\) và hệ số \(a = - 1 < 0\).
Ta có bảng xét dấu \(f\left( x \right)\) như sau:
Tham khảo:
a) \(f\left( x \right) = - 3{x^2} + 4x - 1\)
\(a = - 3 < 0\), \(\Delta = {4^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = 4 > 0\)
=> \(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\)
Bảng xét dấu:
b) \(f\left( x \right) = {x^2} - x - 12\)
\(a = 1 > 0\), \(\Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 > 0\)
=> \(f\left( x \right)\) có 2 nghiệm \(x = - 3,x = 4\)
Bảng xét dấu:
c) \(f\left( x \right) = 16{x^2} + 24x + 9\)
\(a = 16 > 0\), \(\Delta ' = {12^2} - 16.9 = 0\)
=> \(f\left( x \right)\) có nghiệm duy nhất \(x = - \frac{3}{4}\)
Bảng xét dấu:
a) 3x^3 -10x+3 =(3x-1)(x-3)
x | -vc | 1/3 | 5/4 | 3 | +vc | |||||||||
3x-1 | - | 0 | + | + | + | + | + | |||||||
x-3 | - | - | - | - | - | 0 | + | |||||||
4x-5 | - | - | - | 0 | + | + | + | |||||||
VT | - | 0 | + | 0 | - | 0 | + |
Kết luận
VT< 0 {dấu "-"} khi x <1/3 hoắc 5/4<x<3
VT>0 {dấu "+"} khi x 1/3<5/4 hoặc x> 3
VT=0 {không có dấu} khi x={1/3;5/4;3}
Có a=1>0; \(\Delta=-3<0\)
Bảng xét dấu :
x | \(-\infty\) \(+\infty\) |
\(f\left(x\right)\) | + |
Từ bảng xét dấu trên, ta được :
\(T\left(f\left(x\right)=0\right)=\varnothing;T\left(f\left(x\right)\ne0\right)=R;T\left(f\left(x\right)>0\right)=R;T\left(f\left(x\right)\ge0\right)=R\)
\(T\left(f\left(x\right)<0\right)=\varnothing;T\left(f\left(x\right)\le0\right)=\varnothing\)
Có \(a=1>0;\Delta'=4>0;x_1=-5;x_2=-1\)
Lập bảng xét dấu :
\(x\) | \(-\infty\) -5 -1 \(+\infty\) |
\(f\left(x\right)\) | + 0 - 0 + |
Từ bảng xét dấu trên ta có
\(T\left(f\left(x\right)=0\right)=\left\{-5;-1\right\};T\left(f\left(x\right)\ne0\right)=R\) / \(\left\{-5;-1\right\}\)
\(T\left(f\left(x\right)>0\right)=\left(-\infty;-5\right)\cup\left(-1;+\infty\right)\)
\(T\left(f\left(x\right)\ge0\right)=\left(-\infty;-5\right)\cup\left(-1;+\infty\right)\)
\(T\left(f\left(x\right)<0\right)=\left(-5;-1\right);T\left(f\left(x\right)\le0\right)=\left(-5;-1\right)\)
Đặt f(x)=0
=>5x^2+4x-1=0
=>(x+1)(5x-1)=0
=>x=-1 hoặc x=1/5
=>f(x)<0 khi -1<x<1/5 và f(x)>0 khi x<-1 hoặc x>1/5
Đặt TT: = \(x^2+3x+2;MT:=-x^2+x+12\)
Lập bảng xét dấu TT và MT trên tập xác đinh D=R/\(\left\{-3;4\right\}\)
Từ đó suy ra dấu của f(x)
x | -\(\infty\) -3 1 2 4 \(+\infty\) |
TT | + + 0 - 0 + + |
MT | - 0 + + + 0 - |
f(x) | - // + 0 - 0 + // - |
Từ bảng xét dấu ta được
\(T\left(f\left(x\right)=0\right)=\left\{1;2\right\}\) ; \(T\left(f\left(x\right)\ne0\right)=R\) / \(\left\{-3;1;2;4\right\}\)
\(T\left(f\left(x\right)>0\right)=\left(3;1\right)\cup\left(2;4\right)\) ; \(T\left(f\left(x\right)\ge0\right)=\left(-3;1\right)\cup\left(2;4\right)\)
\(T\left(f\left(x\right)<0\right)=\left(-\infty;-3\right)\cup\left(1;2\right)\cup\left(4;+\infty\right)\)
\(T\left(f\left(x\right)\le0\right)=\left(-\infty;-3\right)\cup\left[1;2\right]\cup\left(4;+\infty\right)\)
Ta có \(a=-5<0;\Delta'=16>0;x_1=-\frac{3}{5};x_2=1\)
Bảng xét dấu :
Từ bảng xét, ta được :
\(T\left(f\left(x\right)=0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ne0\right)=R\)/ \(\left\{-\frac{3}{5};1\right\}\)
\(T\left(f\left(x\right)>0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ge0\right)=\left[-\frac{3}{5};1\right]\)
Từ : \(T\left(f\left(x\right)<0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\) ; \(T\left(f\left(x\right)\le0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\)