K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

2.c

\(x+\sqrt{4x^2-4x+1}=5\)

\(\Leftrightarrow x+\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow x+\left|2x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2x-1=5;x\ge\dfrac{1}{2}\\x+1-2x=5;x< \dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x=6\\-x=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-4\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{2;-4\right\}\)

13 tháng 11 2021

a: CH=6cm

26 tháng 5 2021

Gọi x là chiều cao của tam giác ; y là cạnh đáy của tam giác (x,y > 0 )

* chiều cao  bằng 3/4 đáy:

   x = 3/4y
=> x - 3/4y = 0 (1)

* Nếu chiều cao tăng thêm...tăng thêm 9m^2:
1/2(y-2)(x+3) = 1/2xy + 9 (sau đó bạn tự giải phương trình nha) (2)
Từ (1),(2) suy ra chiều cao là 12m , cạnh đáy là 16m

26 tháng 5 2021

Bạn giải giúp mình cái hpt luôn đk, mình giải hoài k ra

NV
26 tháng 3 2023

Rút gọn được \(A=\dfrac{\sqrt{x}}{\sqrt{x}-3}\)

\(B-8A\le0\Leftrightarrow\dfrac{x+16}{\sqrt{x}-3}-\dfrac{8\sqrt{x}}{\sqrt{x}-3}\le0\)

\(\Leftrightarrow\dfrac{x-8\sqrt{x}+16}{\sqrt{x}-3}\le0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}-4\right)^2}{\sqrt{x}-3}\le0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}-4=0\\\sqrt{x}-3< 0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=16\\x< 9\end{matrix}\right.\)

Kết hợp ĐKXD ta được: \(\left[{}\begin{matrix}x=16\\0\le x< 9\end{matrix}\right.\)

loading...  loading...  

28 tháng 1 2022

a) Xét \(\left(O\right):\)

+) Ta có: Dây AB = Dây AC (\(\Delta ABC\) cân tại A).

\(\Rightarrow\stackrel\frown{AB}=\stackrel\frown{AC}.\)

+) \(\widehat{ABM}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (Góc tạo bởi tia tiếp tuyến và dây cung).

\(\widehat{ABC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).

Mà \(\stackrel\frown{AB}=\stackrel\frown{AC}\left(cmt\right).\)

\(\Rightarrow\widehat{ABM}=\widehat{ABC}.\)

\(\Rightarrow\) BA là phân giác \(\widehat{CBM}.\)

b) Xét \(\left(O\right):\)

\(\widehat{MBA}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (Góc tạo bởi tia tiếp tuyến và dây cung).

\(\widehat{MDB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (Góc nội tiếp).

\(\Rightarrow\widehat{MBA}=\widehat{MDB}.\)

Xét \(\Delta MAB\) và \(\Delta MBD:\)

\(\widehat{MBA}=\widehat{MDB}.\)

\(\widehat{BMD}chung.\)

\(\Rightarrow\Delta MAB\sim\Delta MBD\left(g-g\right).\)

\(\Rightarrow\dfrac{MA}{MB}=\dfrac{MB}{MD}\) (Cặp cạnh tương ứng tỉ lệ).

\(\Rightarrow MA.MD=MB^2.\)