K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

câu hỏi đâu bn?

21 tháng 1 2022

Lỗi ảnh rùi

11 tháng 4 2022

Xét đường tròn tâm O có :

góc ABF = 90 ( góc nội tiếp chắn AF) => AB vuông góc BF

ta lại có CH vuông góc AB => CH // BF (từ vuông góc đến song song)

góc ACF = 90 ( góc nội tiếp chắn AF) => AC vuông góc CF

ta lại có BH vuông góc AC => BH // CF ( từ vuông góc đến song song ) 

xét từ giác BHCF có

CH // BF

  BH // CF

=> tg BHCF là hình bình hành ( dấu hiệu nhận biết)

mà I là tđ của đường chéo BC=> I là trnug điểm của đường chéo HF 

=> H,I,F thẳng hàng 

 

c: ta có: \(\sqrt{-x^2+x+4}=x-3\)

\(\Leftrightarrow-x^2+x+4=x^2-6x+9\)

\(\Leftrightarrow-2x^2+7x-5=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

20 tháng 9 2021

Em cảm ơn ạ nhưng ý em là bài viết các biểu thức về dạng bình phương của 1 biểu thức ấy ạ :D

10 tháng 6 2021

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

NV
7 tháng 2 2022

Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?

Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)

Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)

Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)

Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)

Tam giác vuông \(IJO\)\(IJ^2=OI^2-JO^2\)

\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)

Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)

Do O là trung điểm BC nên \(IO\perp BC\)

\(\Rightarrow OI^2+OC^2=IC^2\) 

Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)

Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)

\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)

Thế vào (3):

\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)

NV
7 tháng 2 2022

Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c

Câu 2: 

a: Xét ΔCKE và ΔCDH có

\(\widehat{CEK}=\widehat{CHD}\)

\(\widehat{C}\) chung

Do đó: ΔCKE\(\sim\)ΔCDH

Suy ra: CK/CD=CE/CH

hay \(CK\cdot CH=CD\cdot CE\)

b: Xét ΔIAD và ΔICB có 

\(\widehat{IAD}=\widehat{ICB}\)

\(\widehat{AID}=\widehat{CIB}\)

Do đó: ΔIAD\(\sim\)ΔICB

Suy ra: IA/IC=ID/IB

hay \(IA\cdot IB=IC\cdot ID\)

20 tháng 9 2021

a. \(\sqrt{x^2-2x+4}=2x-2\)

<=> x2 - 2x + 4 = (2x - 2)2

<=> x2 - 2x + 4 = 4x2 - 8x + 4

<=> 4x2 - x2 - 8x + 2x + 4 - 4 = 0

<=> 3x2 - 6x = 0

<=> 3x(x - 2) = 0

<=> \(\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

b. \(\sqrt{x^2-2x}=\sqrt{2-3x}\)          

<=> x2 - 2x = 2 - 3x 

<=> x2 + 3x - 2x - 2 = 0

<=> x2 + x - 2 = 0

<=> x2 + 2x - x - 2 = 0

<=> x(x + 2) - (x + 2) = 0

<=> (x - 1)(x + 2) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

c. (Tương tự câu a)

20 tháng 9 2021

Cảm ơn bn nha :>

7 tháng 6 2021

a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)

\(\Rightarrow\angle ADE=\angle AHE=90\Rightarrow AHDE\) nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow BC\bot AE\)

Vì \(\left\{{}\begin{matrix}EI\bot AB\\AI\bot BE\end{matrix}\right.\Rightarrow I\) là trực tâm \(\Delta EAB\Rightarrow BI\bot AE\Rightarrow B,I,C\) thẳng hàng

Ta có: \(\angle CFD=\angle CAD\left(CDFAnt\right)=\angle EAD=\angle EHD\)

\(\Rightarrow EH\parallel CH\) mà \(EH\bot AB\Rightarrow CF\bot AB\)

CF cắt AB tại G \(\Rightarrow G\) là trung điểm CF mà \(CF\bot AB\Rightarrow\Delta CBF\) cân tại B

Ta có: \(OA=OC=AC=R\Rightarrow\Delta OAC\) đều \(\Rightarrow\angle CAO=60\)

Vì CAFB nội tiếp \(\Rightarrow\angle CFB=\angle CAB=60\Rightarrow\Delta CFB\) đều

undefined

 

 

3:

a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)-x+2\sqrt{x}}{x-4}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}-x+2\sqrt{x}}{x-4}\)

\(=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b: Khi x=4-2căn 3 thì \(A=\dfrac{\sqrt{3}-1}{\sqrt{3}-1-2}=\dfrac{\sqrt{3}-1}{\sqrt{3}-3}=\dfrac{-1}{\sqrt{3}}\)