Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(M=-\dfrac{7}{10^{2011}}+\dfrac{-15}{10^{2012}}\) và \(N=\dfrac{-15}{10^{2011}}+\dfrac{-8}{10^{2012}}\)
Xét \(M=-\dfrac{7}{10^{2011}}-\dfrac{15}{10^{2012}}=-\dfrac{1}{10^{2011}}\left(7+\dfrac{15}{10}\right)=-\dfrac{1}{10^{2011}}\cdot\dfrac{17}{2}\).
Xét \(N=-\dfrac{15}{10^{2011}}-\dfrac{8}{10^{2012}}=-\dfrac{1}{10^{2011}}\left(15+\dfrac{8}{10}\right)=-\dfrac{1}{10^{2011}}\cdot\dfrac{79}{5}\).
Ta cũng có : \(\dfrac{M}{N}=\dfrac{-\dfrac{1}{10^{2011}}\cdot\dfrac{17}{2}}{-\dfrac{1}{10^{2011}}\cdot\dfrac{79}{5}}=\dfrac{\dfrac{17}{2}}{\dfrac{79}{5}}=\dfrac{85}{158}\)
\(\Rightarrow M=\dfrac{85}{158}N\). Mà \(\dfrac{85}{158}< 1\) nên \(M< N\).
Vậy : \(M< N\).
\(xet:M-N=-\frac{7}{2^{2011}}+\frac{-15}{10^{2012}}-\left(-\frac{15}{10^{2011}}+\frac{-8}{10^{2012}}\right)=\frac{8}{2^{2011}}-\frac{7}{2^{2012}}\)
\(=\frac{1}{2^{2011}}\left(8-\frac{7}{2}\right)>0\)
Vậy M>N
\(A=\dfrac{10^{2012}+1}{10^{2011}+1}\)
Mà ta có: \(10^{2012}+1>10^{2011}+1\)
\(\Rightarrow A=\dfrac{10^{2022}+1}{10^{2011}+1}>1\) (1)
\(B=\dfrac{10^{2011}+1}{20^{2010}+1}\)
Mà ta có: \(20^{2010}+1>10^{2011}+1\)
\(\Rightarrow B=\dfrac{10^{2011}+1}{20^{2010}+1}< 1\) (2)
Từ (1) và (2) \(\Rightarrow A>B\)