Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
a/ Thay m=-1 vào phương trình (1) ta được:
\(x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)
b/ Xét phương trình (1) có
\(\Delta=\left(m+2\right)^2-4.2m\)
= \(m^2-4m+4=\left(m-2\right)^2\)
Ta có: \(\left(m-2\right)^2\ge0\) với mọi m
\(\Leftrightarrow\Delta\ge0\) với mọi m
\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)
Theo đề bài ta có:
\(\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)
\(\Leftrightarrow m^2+2m-1\le0\)
\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)
vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)
a)
\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)
Vì \(\Delta'\ge0\) nên phương trình có nghiệm với mọi m
b) Theo Vi-ét có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)
Lấy phương trình đầu của hệ, kết hợp với đề bài, có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Ta có
\(x_1x_2=4m-m^2\)
Đã tìm được \(x_1\) và \(x_2\) , thay vào để tìm m
a/ Bạn tự giải
b/ \(\Delta'=-m^2+2m\)
Để pt có nghiệm thì \(\Delta'\ge0\Rightarrow-m^2+2m\ge0\Rightarrow0\le m\le2\)
Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-2m+1=\left(m-1\right)^2\end{matrix}\right.\)
Xét \(A=\left|x_2-x_1\right|\Rightarrow A^2=\left(x_2-x_1\right)^2\)
\(A^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(A^2=4-4\left(m-1\right)^2\le4\)
\(\Rightarrow A\le2\) (đpcm)
Dấu "=" xảy ra khi \(m-1=0\Rightarrow m=1\)
Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{b}{a}\) = \(\frac{3}{2}\) Và x1.x2 = \(\frac{c}{a}=\frac{1}{2}\)
a) \(\) \(\frac{1}{\text{x1}}+\frac{1}{x2}=\frac{x1+x2}{x1.x2}=\frac{\frac{3}{2}}{\frac{1}{2}}=\frac{3}{1}=3\)
b)\(\frac{1-x1}{x1}+\frac{1-x2}{x2}=\frac{\left(1-x1\right)x2+\left(1-x2\right)x1}{x1.x2}=\frac{x2-x1.x2+x1-x1.x2}{x1.x2}=\frac{\left(x1+x2\right)-2x1.x2}{x1.x2}=\frac{\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\)
c) \(\frac{x1}{x2+1}+\frac{x2}{x1+1}=\frac{x1^2+x1+x2^2+x2}{x1.x2+x1+x2+1}=\frac{\left(x1^2+2x1.x2+x2^2\right)+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\left(x1+x2\right)^2+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\frac{3^2}{2^2}+\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}+\frac{3}{2}+1}=\frac{11}{12}\)
\(\frac{x_1^2-2}{x_1+1}.\frac{x_2^2-2}{x_2+1}=4\)
\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1+x\right)\left(x_2+1\right)}=4\)
\(\frac{\left(x_1.x_2\right)^2-2x_1^2-2x_2^2+4}{x_1.x_2+x_1+x_2+1}=4\)
\(\frac{\left(x_1.x_2\right)^2-2\left(x^2_1+x_2^2\right)+4}{x_1.x_2+\left(x_1+x_2\right)+1}=4\)
\(\frac{\left(m-2\right)^2-2.\left[\left(x_1+x_2\right)-2x_1x_2\right]+4}{m-2+\left(-m\right)+1}=4\)
\(\frac{m^2-4m+4-2.\left[m^2-2\left(m-2\right)\right]+4}{-1}=4\)
\(\Leftrightarrow m^2-4m+4-2\left(m^2-2m+4\right)+4=-4\)
\(\Leftrightarrow m^2-4m+4-2m^2+4m-8+4+4=0\)
\(\Leftrightarrow-m^2+4=0\)
\(\Leftrightarrow m^2-4=0\)
\(\Leftrightarrow m^2=4\)
\(\Leftrightarrow m=\pm2\)
vậy \(m=\pm2\) là các giá trị cần tìm
Ta có \(\Delta^'=\left(m-1\right)^2-\left(m^2+1\right)=m^2-2m+1-m^2-1=-2m.\)
Để phương trình đã cho có 2 nghiệm \(x_1,x_2\)thì \(\Delta^'\ge0\Leftrightarrow-2m\ge0\Leftrightarrow m\le0\)
áp dụng hệ thức Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+1\end{cases}}\)
Dễ thấy \(x_1x_2=m^2+1\ge1\Rightarrow x_1,x_2\ne0\forall m\)
Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\)\(\Leftrightarrow\frac{x^2_1+x_2^2}{x_1x_2}=4\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2=4\Leftrightarrow\left(x_1+x_2\right)^2=6x_1x_2\)
\(\Leftrightarrow\left(2\left(m-1\right)\right)^2=6\left(m^2+1\right)\Leftrightarrow4m^2-8m+4=6m^2+6\)
\(\Leftrightarrow2m^2+8m+2=0\Leftrightarrow m^2+4m+4=3\Leftrightarrow\left(m+2\right)^2=3\)
\(\Leftrightarrow\orbr{\begin{cases}m+2=\sqrt{3}\\m+2=-\sqrt{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=\sqrt{3}-2\left(TMĐK\right)\\m=-\sqrt{3}-2\left(TMĐK\right)\end{cases}.}\)
Vậy..........
Nhìn nó tưởng khủng hóa ra đơn giản lắm :D
Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn
Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn
=> VT = VP. đpcm
Lão Linh mới xét đến điều kiện dấu "=" xảy ra
Thế còn điều kiện "<" vứt đâu?
Đề thiếu dữ kiện. Bạn xem lại đề.